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Preface

This book contains a selection of revised papers from the 4th Workshop on
Machine Learning for Multimodal Interaction (MLMI 2007), which took place
in Brno, Czech Republic, during June 28–30, 2007. As in the previous editions
of the MLMI series, the 26 chapters of this book cover a large area of topics,
from multimodal processing and human–computer interaction to video, audio,
speech and language processing. The application of machine learning techniques
to problems arising in these fields and the design and analysis of software sup-
porting multimodal human–human and human–computer interaction are the two
overarching themes of this post-workshop book.

The MLMI 2007 workshop featured 18 oral presentations—two invited talks,
14 regular talks and two special session talks—and 42 poster presentations. The
participants were not only related to the sponsoring projects, AMI/AMIDA
(http://www.amiproject.org) and IM2 (http://www.im2.ch), but also to other
large research projects on multimodal processing and multimedia browsing, such
as CALO and CHIL. Local universities were well represented, as well as other
European, US and Japanese universities, research institutions and private com-
panies, from a dozen countries overall.

The invited talks were given by Nick Campbell from the ATR Spoken Lan-
guage Communication Research Labs in Kyoto, Japan—published as the opening
chapter of this book—and by Václav Hlaváč from the Czech Technical Univer-
sity in Prague. The first day of the workshop included a special session with
results from the second PASCAL Speech Separation Challenge (Part VII of
the book), while the third day constituted the AMIDA Training Day. During
the week following MLMI 2007, the Summer School of the European Masters
in Speech and Language was also held at the Brno University of Technology.
Oral presentations at the workshop were recorded using IDIAP’s Presentation
Acquisition System, thus making audio, video and slides publicly available at
http://mmm.idiap.ch/talks.

The reviewing and revision process specific to the MLMI series ensured that
high-quality chapters based on oral and poster presentations appear in this book.
Prior to the workshop, full paper submissions were reviewed by at least three
members of the Program Committee under the supervision of one of the five
Area Chairs, some of the papers being accepted as oral presentations and some
as posters. Submitted at a later deadline, additional abstracts for posters were
reviewed by Area Chairs. After the workshop, all poster presenters were invited
to (re)submit full papers, which underwent a second round of reviewing, while
authors of oral presentations were asked to revise their full papers based on feed-
back received during the first round. Overall, about two thirds of all submitted
full papers appear in this book, which is also about one third of all submitted
papers and abstracts.



VI Preface

The editors would like to acknowledge the sponsorship of the AMI and
AMIDA Integrated Projects, supported by the European Commission under the
Information Society Technologies priority of the sixth Framework Programme,
and of the IM2 National Center of Competence in Research, supported by the
Swiss National Science Foundation. We also thank very warmly the members
of the Program Committee, in particular the Area Chairs, as well as all those
involved in the workshop organization, for making this fourth edition of MLMI
a success, resulting in the present book.

To conclude, we would like to remind the reader that selected papers from
previous editions of MLMI were published as Springer’s LNCS 3361, 3869 and
4299, and that the fifth MLMI (http://www.mlmi.info) will take place in Utrecht,
The Netherlands, on September 8–10, 2008.

October 2007 Andrei Popescu-Belis
Steve Renals

Hervé Bourlard
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Josef Žižka Brno University of Technology (Webmaster)

Program Committee

Marc Al-Hames Munich University of Technology
Jan Alexandersson DFKI
Tilman Becker DFKI
Samy Bengio Google
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Jan Cuř́ın, Pascal Fleury, Jan Kleindienst, and Robert Kessl

Object Category Recognition Using Probabilistic Fusion of Speech and
Image Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Kate Saenko and Trevor Darrell

HCI, User Studies and Applications

Automatic Annotation of Dialogue Structure from Simple User
Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Matthew Purver, John Niekrasz, and Patrick Ehlen

Interactive Pattern Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
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Frequency Domain Linear Prediction for QMF Sub-bands and
Applications to Audio Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Petr Motlicek, Sriram Ganapathy, Hynek Hermansky, and
Harinath Garudadri

Modeling Vocal Interaction for Segmentation in Meeting Recognition . . . 259
Kornel Laskowski and Tanja Schultz

Binaural Speech Separation Using Recurrent Timing Neural Networks
for Joint F0-Localisation Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Stuart N. Wrigley and Guy J. Brown

PASCAL Speech Separation Challenge II

To Separate Speech: A System for Recognizing Simultaneous
Speech . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

John McDonough, Kenichi Kumatani, Tobias Gehrig,
Emilian Stoimenov, Uwe Mayer, Stefan Schacht,
Matthias Wölfel, and Dietrich Klakow

Microphone Array Beamforming Approach to Blind Speech
Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Ivan Himawan, Iain McCowan, and Mike Lincoln

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307



Robust Real Time Face Tracking for the

Analysis of Human Behaviour

Damien Douxchamps1 and Nick Campbell2

1 Image Processing Laboratory,
Nara Institute for Science and Technology,

Nara 630-0192, Japan
2 National Institute of Information and Communications Technology

& ATR Spoken Language Communication Research Labs
Keihanna Science City, Kyoto 619-0288, Japan
nick@nict.go.jp, ddouxcha@is.naist.jp

Abstract. We present a real-time system for face detection, tracking
and characterisation from omni-directional video. Viola-Jones is used as
a basis for face detection, then various filters are applied to eliminate
false positives. Gaps between two detection of a face by the Viola-Jones
algorithms are filled using a colour-based tracking. This system reliably
detects more than 97% of the faces across several one-hour videos of un-
constrained meetings, both indoor and outdoor, while keeping a very low
false-positive rate (<0.05%) and without changes in parameters. Diverse
measurements such as head motion and body activity are extracted to
provide input to further research on human behaviour and for track-
ing participant activites at round-table meetings and similar discourse
environments.

1 Introduction

The analysis of the relation between human behaviour and speech has been
the subject of numerous research in the past and has recently formed the core
of integrated research on meetings activity. One particular case of interest is
the analysis of discourse processes and human interactions in meetings because
those are common, easy to setup and provide a relatively controlled environment
while encouraging people to express themselves [1,2,3,4]. However, the various
approaches used to track the people’s behaviour in these circumstances often
use intrusive equipment, like individual cameras and microphones. As intrusions
into the discourse will inevitably change the behaviour of people, less invasive
techniques are sought [5].

In this context, we have developed a real-time video system that relies on a sin-
gle small omnidirectional camera to retrieve information about the attendants’
motion and activity level. No specific lighting is required. Given the relatively
low resolution of our video it is not possible to extract fine information such as
eye gaze but we can still detect heads and calculate the person’s motion and
activity. In a later stage only briefly mentioned here, this data is then corre-
lated with verbal and non-verbal speech to infer higher level information about
behaviour of discourse participants.

A. Popescu-Belis, S. Renals, and H. Bourlard (Eds.): MLMI 2007, LNCS 4892, pp. 1–10, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Processing flow for each frame of the video

The detection and tracking of faces is a well covered subject in the literature.
Among the different techniques available, the one proposed by Viola and Jones
[6] [7] has the best results for low-resolution video and has been used in many
situations. However, the number of studies reporting on their actual detection
rate is surprisingly small, or they are limited to short video sequences. Examples
include Fröba (90% detection rate, 0.5% false positive rate) [8], Kawato (89%,
1%) [9] and Castrillón-Santana [10]. In this paper we will show how to achieve a
very high detection rate (>97%, <0.05%) in the case of unconstrained meetings
lasting over an hour.

2 Video Processing

The processing techniques (Fig. 1) used in our system are standard and well
documented, such as face detection and block matching (BMA). However, it
is not trivial to build a real-time processing chain from these building blocks,
especially when a high level of detection is to be achieved without any constraints
given to the participants of the meeting.

Visual clues of the behaviour of discourse participants are extracted from the
streaming video image by combining standard tools to form a more specialized
video processing chain. Much of the processing is aimed towards a proper face
detection since the face is a human feature that is relatively easy to detect and
contains a lot of information concerning the behaviour of the person. Detecting
hands is also an option but these are more difficult to track as their shape can
vary greatly and they also move much faster. This in turn requires a higher
video framerate, which weighs heavily on the processing speed. Our process for
detecting and characterizing faces is as follows:

2.1 Video Capture, Demozaicing and Rectification

The video signal from a digital camera is decoded from a raw Bayer format
to a full RGBI image. The demozaicing is performed using the ‘Edge Sense II’
algorithm presented in [12]. This algorithm provides good quality output while
still being able to run at a reasonable speed. Other algorithms have been used
[13] [14] but did not provide a significant advantage while being considerably
slower. The circular, 360◦ image of Fig. 2 is then rectified with a linear subpixel
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Fig. 2. Circular 360 degrees image captured by the camera (1040×1040)

Fig. 3. Rectified 360 degrees image (2048×260). Note the limited vertical resolution.

resampling before the face detection. To ensure a proper scaling of the faces,
the horizontal size of the rectified image is set around 2πr where r is the aver-
age radial position of faces in the circular image. This rectification is necessary
because the Viola-Jones face detection cannot detect faces in any orientation
without a significant additional computational cost or a loss in accuracy. The
resulting rectified image (Fig. 3) is now ready to be used for the face detection.

2.2 Face Detection

Face detection can be performed in a number of ways. The first technique that
we tried was based on background subtraction and colour segmentation [15]. It
has the advantage of not requiring an image rectification, but it failed to provide
satisfactory results due to illumination changes and colour variability. A better
approach is to use the Viola-Jones face detection [6] [7] which is based on pattern
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matching. One drawback of this approach is that the algorithm must be trained
on a large number of images, but standard software packages such as OpenCV
[11] provide example training data (in the form of Haar cascades) that we found
to be very effective to detect the two patterns that we are most interested in:
profile faces and frontal faces. In fact, using the Viola-Jones detection alone more
than 50% of faces can be found during our round-table meetings.

To filter out the few non-faces that were detected we use two filters. The first
one limits the size of the head within a reasonable range. The second one verifies
that the face region contains a minimum of 25% of skin-coloured pixels. We found
that the skin tone could be defined with sufficient accuracy in the RGB color
space using the following criteria: 0.55<R<0.85, 1.15<R/G<1.9, 1.15<R/B<1.5
and 0.2<(R+G+B)/3<0.6. We have successfully used the same criteria for both
indoor and outdoor scenes. At last, the binary mask of skin-coloured pixels is
eroded and dilated using mathematical morphology before counting the number
of skin-coloured pixels.

After this filtering, overlapping face-regions can still exist but they are re-
moved easily by verifying that their overlapping region is not greater than around
20%. If so, the smallest face is discarded. Note that removing all faces that have
the slightest overlap is not appropriate because people may be approaching each
other for talking discretely, and their face regions may thus intersect slightly.

The Viola-Jones face detection is strictly frame-based. The lack of time in-
tegration means that the detection is not guaranteed to be continuous. In fact
it can oscillate even with small image variations: a face can be detected in one
frame, disappear in the next frame and then reappear again. To avoid these in-
stabilities, we introduce a method to track the faces and bridge the gaps between
two successive detections.

2.3 Face Tracking

If a face region in one frame intersects with a face region in the next frame,
they will be considered to be from the same physical face and tracking is not
necessary. If no such face can be found in the next frame, we will attempt to
bridge the Viola-Jones detection gap by looking for an instance of the older
face in the newer frame, using a classic block-matching algorithm (BMA) based
on the Sum of Absolute Differences (SAD). This matching can drift in time
so it is necessary to limit it with some safeguards. The first one consists in
limiting the time during which this gap-bridging will be performed. Given the
very low false-positive rate of the face detection (see Section 3) we can allow a
long maximal tracking time of 30 seconds. Secondly, we verify that the tracked
face still contains a minimal amount of skin-coloured area, as we did after the
Viola-Jones detection. Thirdly, the image difference between the old and tracked
faces should be limited b y a threshold. Finally, the amount of face motion is
also limited by the size of the search zone of the BMA.

At this point we have not yet included any situation-specific verifications that
may help to filter out the last outlying faces. To remain as generic as possible
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Fig. 4. Typical output from the program showing two 180 degrees sections on top of
each other. Detected faces are shown with a white or black square.

we only include one: if two faces are overlapping vertically (i.e., if they belong
to the same image column) then only the highest face is kept. This is a small
restriction that remains valid for most meeting situations. A visual output of a
final set of detected faces is shown in Fig. 4.

2.4 Motion and Activity Estimation

Once faces are properly detected a number of measurements are performed to
identify their position, motion, and surface. The motion estimation cannot be
performed on the positions of the detected faces because they are too unsta-
ble; parasitic motions of +/- 5 pixels are not uncommon with the Viola-Jones
detection. The motion estimation is therefore performed using subpixel block
matching (BMA) on the image content. Two measures of a person’s activity are
also computed as the mean SAD between the previous and the current image:
one is computed on the face region, and the other on the body region, the lat-
ter being defined as the area below the face with a width three times that of
the face.

The graphs in Fig. 5 show a small section of five minutes of a few head and
body measures for the nine persons attending a meeting. These graphs show
that the vertical and horizontal motion estimation of the face is able to resolve
small details. For example persons mimicking a ‘yes’ or ‘no’ head movement are
visible as small sinewave bursts in the vertical or horizontal head motion. Activ-
ity measures also correlate well with the global movements of a person. These
measurements are now being correlated more systematically with manually la-
beled audiovisual data to provide clues about the link between physical activity
and both verbal and nonverbal discourse events. This work, however, is beyond
the scope of the present paper.
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Fig. 5. The body and head activity (top row) and the head horizontal and vertical
movement (bottom row) of the 9 participants found in the third sequence

3 Experiments

The proposed system has been tested under several conditions of lighting, image
resolution and human activity. The minimum resolution for the circular image
was found to be around 1000×1000; of the tests meeting this criteria five will be
shown and discussed here. All tests were performed with the same hardware and
processed with the same software and parameters. Typical output images are
presented for each sequence in Fig. 6 together with a histogram of the frames of
each sequence according to the number of faces detected in each of them. Ideally,
each histogram should show a single bar for the bin corresponding to the number
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of people attending the meeting. Due to various errors, detection will sometimes
fail and frames with fewer people detected than expected will exist. Similarly,
false positives may lead to frames with a higher number of detected people than
expected.

The first sequence is a one-hour meeting recorded at 10 frames per second. It
has a raw detection rate of 95%. Some of the faces are not present at all during
some periods of time, for instance when a person leaves her seat to write on a
white-board. If we take these long events into account the detection rate climbs
to 97%. The unrestricted movements of people also leads to other numerous
small undetectability events that are more difficult to take into account, such
as looking at the ceiling, looking back, face obscured by a sheet of paper, and
so on .... The 97% figure may thus be an underestimate. At the same time, the
amount of false positives is less than 2%.

The second sequence shows limits in our approach, with a poor detection
rate of 57%. This is explained by three factors: 1) a high contrast video with
strong shadows is not optimal for our Viola-Jones detection; 2) the rectangular
table means that people far from the camera will appear too small, which is
also difficult for the Viola-Jones algorithm to detect and 3) the sharpness of the
sequence was poor, washing face features away. Consequently, further tests were
performed with a lower contrast and a square table, the latter leading to more
homogenous face sizes than the rectangular table used in this test.

The third sequence has a similar detection rate to the first one: 96%. This
test suffers a high false positive rate of 2% due to a high colour noise and
poor white balance, as lights were switched on and off during the meeting to
allow a video projection to be displayed. Many of the non-detections during this
sequence are due to people looking away from the camera at table centre towards
the presentation screen instead. Their faces are then strongly tilted or hidden,
presenting angles that the Viola-Jones algorithm was not trained to detect.

The fourth sequence was taken outdoors while using identical processing pa-
rameters. Surprisingly, the detectability is also good (93%) but could without
doubt benefit from fine tuning of the parameters. However, the strong direction-
ality of the sunlight results in a set of brighter faces (facing towards the sun)
and darker faces (back to the sun) which cannot be simultaneously optimized.
This difference in exposure poses problems both for the Viola-Jones and for the
colour-tracking.

Finally, the fifth sequence has a poor detection rate of 33%. The conditions
were that of the second test but the camera was in the way of the projector
beam which strongly influenced the white balance, lowered contrast and added
a significant amount of flare. The histogram shows two distributions which cor-
respond to the projector being on or off. The large number of tilted heads also
partially explain the lower detection rate.

Overall, the face detection appears to work very well even in very different sit-
uations, provided that the scene has a reasonable focus, white-balance, sharpness
and dynamic range.
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Fig. 6. Detection results for five test sequences. A representative image from the se-
quence is shown in the (left column). The (right column) contains the histogram of the
number of images (vertical axis) per number of people detected (horizontal axis).
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4 Conclusions

We have presented an image processing technique that is able to reliably extract
faces from hour-long recordings of unconstrained meetings. Our technique is able
to achieve a very good detection rate (>95%) while keeping the false positives
to a negligible level (<1.5%). Conditions for which our approach has problems
have been identified but can be easily avoided so that they do not limit its scope
of application.
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Abstract. Eye gaze and gesture form key conversational grounding cues
that are used extensively in face-to-face interaction among people. To
accurately recognize visual feedback during interaction, people often use
contextual knowledge from previous and current events to anticipate
when feedback is most likely to occur. In this paper, we investigate how
dialog context from an embodied conversational agent (ECA) can im-
prove visual recognition of eye gestures. We propose a new framework
for contextual recognition based on Latent-Dynamic Conditional Ran-
dom Field (LDCRF) models to learn the sub-structure and external dy-
namics of contextual cues. Our experiments show that adding contextual
information improves visual recognition of eye gestures and demonstrate
that the LDCRF model for context-based recognition of gaze aversion
gestures outperforms Support Vector Machines, Hidden Markov Models,
and Conditional Random Fields.

Keywords: Contextual information, Conditional Random Fields, Eye
gesture recognition, gaze aversion.

1 Introduction

In face to face interaction, eye gaze is known to be an important aspect of
discourse and turn-taking. To create effective conversational human-computer
interfaces, it is desirable to have computers which can sense a user’s gaze and
infer appropriate conversational cues. Embodied conversational agents, either in
robotic form or implemented as virtual avatars, have the ability to demonstrate
conversational gestures through eye gaze and body gesture, and should also be
able to perceive similar displays as expressed by a human user.

Previous work has shown that human participants avert their gaze (i.e. per-
form “look-away” or “thinking” gestures) to hold the conversational floor even
while answering relatively simple questions [1]. A gaze aversion gesture while a
person is thinking may indicate that the person is not finished with their con-
versational turn. If the ECA senses the aversion gesture, it can correctly wait
for mutual gaze to be re-established before taking its turn.

When recognizing visual feedback, people use more than their visual percep-
tion. Knowledge about the current topic and expectations from previous utter-
ances help guide our visual perception in recognizing nonverbal cues. Context

A. Popescu-Belis, S. Renals, and H. Bourlard (Eds.): MLMI 2007, LNCS 4892, pp. 11–23, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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information can be found from cues like the words and prosody/punctuation
(e.g., word pair “do you” with question mark) of the current sentence but the
real meaning and structure of these cues can sometimes be hidden (e.g., this is
a yes/no question). The dynamic between these contextual cues (e.g., “do you”
before the question mark) is also relevant information. An important challenge
for context-based recognition is to learn these hidden sub-structures and external
dynamics from the contextual cues.

In this paper, we present a framework for context-based recognition that uses
Latent-Dynamic Conditional Random Field (LDCRF) models [2] to learn the
hidden sub-structure and external dynamic of contextual information. The main
two contributions of this paper are that we are the first to (1) show that dialog
context can improve gaze aversion recognition and (2) demonstrate that LDCRF
models are superior to other learning methods (i.e., SVM, CRF, and HMM) at
learning relevant context and integrating it with visual observations for gaze
aversion recognition. The power of LDCRFs comes from the fact that it learns
the extrinsic dynamics by modeling a continuous stream of class labels, and
learns internal sub-structure by utilizing intermediate hidden states.

The remainder of this paper is organized as follows. In Section 2 we review
relevant related work, and in Section 3 we present our LDCRF context-based
recognition framework. The details of our three set of experiments including
information about the dataset, the compared models and the methodology are
described in Section 4. We present and discuss the results of our experiments
in Section 5. Finally, a summary and discussion of future work are provided in
Section 6.

2 Related Work

Eye gaze plays an important role in face-to-face interactions. Kendon proposed
that eye gaze in two-person conversation offers different functions: monitoring
visual feedback, expressing emotion and information, regulating the flow of the
conversation (turn-taking), and improving concentration by restricting visual
input [3]. Many of these functions have been studied to create more realistic
ECAs [4,5,6], but they have tended to explore only gaze directed towards indi-
vidual conversational partners or objects.

A considerable body of work has been carried out regarding eye gaze and eye
motion patterns for perceptive user interfaces. Velichkovsky suggested the use
of eye motion to replace the mouse as a pointing device [7]. Qvarfordt and Zhai
used eye-gaze patterns to sense the user interest with a map-based interactive
system [8]. Li and Selker developed the InVision system which responded to a
user’s eye fixation patterns in a kitchen environment [9].

Context has been previously used in computer vision to disambiguate recog-
nition of individual objects given the current overall scene category [10]. Fujie
et al. also used HMMs to perform head nod recognition [11]. In their paper,
they combined head gesture detection with prosodic low-level features computed
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Fig. 1. Comparison of the LDCRF model [2] with two related models: CRF [14] and
HCRF [16,17]. In these graphical models, xj represents the jth observation (corre-
sponding to the jth frame of the video sequence), hj is a hidden state assigned to xj ,
and yj the class label of xj (i.e. head-nod or other-gesture). Gray circles are observed
variables. The LDCRF model combines the strengths of CRFs and HCRFs in that it
captures both extrinsic dynamics and intrinsic structure and can be naturally applied
to predict labels over unsegmented sequences.

from Japanese spoken utterances to determine strongly positive, weak positive
and negative responses to yes/no type utterances.

The use of dialogue context for visual gesture recognition was first explored
in [12]. In [12] they propose a late-fusion framework for incorporating dialog con-
text in head gesture recognition. This framework was later extended to include
context from conventional graphical user interfaces [13]. In both papers, the ex-
periments were performed on head gesture recognition. This paper is the first to
extend the idea of context-based recognition to recognize eye gesture. Also, the
approach presented in [12,13] used multi-class SVMs to train the context-based
recognizer. Unlike LDCRFs, SVMs do not model the external dynamics between
classes and do not explicitly model hidden sub-structure.

LDCRF models offer several advantages over previous discriminative mod-
els (see Figure 1). In contrast to Conditional Random Fields (CRFs) [14], our
method incorporates hidden state variables which model the sub-structure of
gesture sequences. The CRF approach models the transitions between gestures,
thus capturing extrinsic dynamics, but lacks the ability to learn the internal sub-
structure. In contrast to Hidden-state Conditional Random Fields (HCRFs) [15],
our method can learn the dynamics between gesture labels and can be directly
applied to label unsegmented sequences. The results reported in [2] demonstrate
that LDCRF outperforms models based on Support Vector Machines (SVMs),
HMMs, CRFs and HCRFs on visual gesture recognition task. In this paper,
we demonstrate that LDCRF models are superior to other learning methods at
learning relevant context and integrating it with visual observations.

3 Context-Based Recognition Framework Using LDCRF

For reliable recognition of visual feedback during face-to-face conversational in-
teractions, people use knowledge about the current dialogue to anticipate ges-
tures from their interlocutors.
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Fig. 2. Framework for context-based gesture recognition. The contextual predictor
translates contextual features into a likelihood measure, similar to the visual recog-
nizer output. The multi-modal integrator fuses these visual and contextual likelihood
measures.

We can use a conversational agent’s knowledge about the current dialogue to
improve recognition of visual feedback (i.e., eye gestures). The dialogue manager
merges information from the input devices with the history and the discourse
model [18,19]. The dialogue manager contains two main sub-components, an
agenda and a history: the agenda keeps a list of all the possible actions the
agent and the user (i.e., human participant) can do next. This list is updated by
the dialogue manager based on its discourse model (prior knowledge) and on the
history. Dialogue managers generally exploit contextual information to produce
output for the speech and gesture synthesizer, and we can use similar cues to
predict when user visual feedback is most likely.

Following [12], we use three types of contextual features easily available from
the dialogue manager: lexical features, prosody and punctuation, and timing.
The contextual information is extracted from the dialogue manager rather than
directly accessing internal ECA states. This strategy makes it possible to extract
dialogue context without any knowledge of the internal representation and there-
fore makes it appliable to most ECA architectures. Figure 2 shows the general
architecture of the context-based recognition framework.

In the following subsections we first give a formal description of the LD-
CRF and then show how LDCRF is integrated in the context-based recognition
framework.

3.1 LDCRF Model

As described in [2], the task of the LDCRF model is to learn a mapping be-
tween a sequence of observations x = {x1, x2, ..., xm} and a sequence of la-
bels y = {y1, y2, ..., ym}. Each yj is a class label for the jth frame of a video
sequence and is a member of a set Y of possible class labels, for example,
Y = {gaze-aversion, other-gesture}. Each frame observation xj is repre-
sented by a feature vector φ(xj) ∈ Rd, for example, the head velocities at each
frame. For each sequence, we also assume a vector of “sub-structure” variables
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h = {h1, h2, ..., hm}. These variables are not observed in the training examples
and will therefore form a set of hidden variables in the model.

Given the above definitions, we define a latent conditional model:

P (y | x, θ) =
∑

h

P (y | h,x, θ)P (h | x, θ). (1)

where θ are the parameters of the model.
To keep training and inference tractable, we restrict the LDCRF model to

have disjoint sets of hidden states associated with each class label. Each hj is a
member of a set Hyj of possible hidden states for the class label yj. We define
H, the set of all possible hidden states, to be the union of all Hy sets. Since
sequences which have any hj /∈ Hyj will by definition have P (y | h,x, θ) = 0, we
can express the LDCRF model as:

P (y | x, θ) =
∑

h:∀hj∈Hyj

P (h | x, θ). (2)

Given a training set consisting of n labeled sequences (xi,yi) for i = 1...n,
training is done following [20,14] using this objective function to learn the pa-
rameter θ∗:

L(θ) =
n∑

i=1

log P (yi | xi, θ) − 1
2σ2

||θ||2 (3)

The first term in Eq. 3 is the conditional log-likelihood of the training data.
The second term is the log of a Gaussian prior with variance σ2, i.e., P (θ) ∼
exp

(
1

2σ2 ||θ||2).
For testing, given a new test sequence x, we want to estimate the most prob-

able sequence labels y∗ that maximizes our conditional model:

y∗ = arg max
y

∑

h:∀hi∈Hyi

P (h | x, θ∗) (4)

For a more detailed discussion of LDCRF training and inference see [2].

3.2 LDCRF Context-Based Recognition

The contextual predictor outputs a likelihood measurement at the same frame rate
as the vision-based recognizer so that the multi-modal integrator can merge both
measurements. For this reason, feature vectors xj are computed at every frame j
(even though the contextual features do not directly depend on the input images).

For the LDCRF model, the likelihood measurement for a specific gesture g is
equal to the marginal probability P (yj = g | x, θ∗). This probability is equal to
the sum of the marginal probabilities for the hidden states part of the subset Hg:

P (yj = g | x, θ∗) =
∑

h:∀hj∈Hg

P (h | x, θ∗) (5)
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where x is the concatenation of all the feature vectors xj for the entire sequence
and θ∗ are the model parameters learned during training. When testing offline,
the marginal probabilities are computed using a forward-backward belief prop-
agation algorithm. To estimate the marginal probabilities online, it is possible
to define x as the concatenation of all feature vectors up to frame j and use the
forward-only belief propagation algorithm.

Our integration component takes as input the likelihood measurement from
the contextual predictor and the visual observations from the vision-based head
gesture recognizer, and recognizes whether a head gesture has been expressed
by the human participant. The output from the integrator is further sent to the
dialogue manager or the window manager so it can be used to decide the next
action of the ECA.

4 Experiments

We designed our experiments to demonstrate how contextual information can
improve eye gesture recognition and to demonstrate the superior performance of
LDCRF on context-based recognition compared to baseline methods. We per-
formed three series of experiments:

Experiment 1. Where we compare the vision-only approach with the context-
based recognition using LDCRF models. The goal of this experiment is to show
that dialog context can improve eye gesture recognition

Experiment 2. Where we compare the LDCRF model to SVM, CRF and HMM
models for context-based recognition of gaze aversion. In this set of experiments,
the contextual predictor and the multimodal integrator are both trained using
the same model (either LDRCF, SVM, CRF or HMM). The goal of this experi-
ment is to show the superiority of LDCRF for context-based recognition.

Experiment 3. Where we first train the contextual predictor with the LDCRF
model and then train the multimodal integrator with one of the four model.
The goal of this experiment is to analyze the relative importance of LDCRF for
contextual prediction and multimodal integration.

In the following subsections, we first describe our dataset used in our experi-
ments, then present the models used to compare the performance of the LDCRF
model, and finally describe our experimental methodology.

4.1 Eye Gesture Dataset

Our dataset came from a user study that shown that human participants nat-
urally perform gaze aversion gestures when interacting with an avatar [1]. The
goal of this dataset is to differentiate gaze aversion gestures from all other type
of eye gestures (e.g., eye contact or deictic gestures). Our dataset consist of 6 hu-
man participants interacting with a virtual embodied agent. Each video sequence
lasted approximately 10-12 minutes, and was recorded at 30 frames/sec, for a
total of 105,743 frames. During these interactions, human participants would
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rotate their head up to +/-70 degrees around the Y axis and +/-20 degrees
around the X axis, and would also occasionally move their head, mostly along
the Z axis.

The dataset was labeled with the start and end points of each gaze aver-
sion gestures. Each frame was labeled either as gaze-aversion or as other-gesture
which included sections of video where people were looking at the avatar or
performing deictic gestures. The contextual cues from the dialogue manager
(spoken utterances with start time and duration) were recorded during each
interaction and were later automatically processed to create the contextual fea-
tures necessary for the contextual predictor. The previous section showed how
the contextual features are automatically computed.

For each video sequence, the eye gaze was estimated using the view-based
appearance model described in [1] and for each frame a 2-dimensional eye gaze
estimate was obtained. The eye gaze estimates were logged online with the con-
textual cues. For this dataset, the vision-based recognizer is a LDCRF model
trained and validated offline on the same training and validation sets used for
the contextual predictor and the multi-modal integrator.

4.2 Models

In our experiments, the LDCRF model is compared with three models: Condi-
tional Random Field (CRF), Hidden Markov Model (HMM) and Support Vector
Machine (SVM).

Conditional Random Field. As a first baseline, we trained a single CRF
chain model where every gesture class has a corresponding state label. During
evaluation, marginal probabilities were computed for each state label and each
frame of the sequence using belief propagation. The optimal label for a specific
frame is typically selected as the label with the highest marginal probability. In
our case, to be able to plot ROC curves of our results, the marginal probability
of the primary label (i.e. gaze-aversion) was thresholded at each frame, and
the frame was given a positive label if the marginal probability was larger than
the threshold. The objective function of the CRF model contains a regulariza-
tion term similar to the regularization shown in Equation 3 for the LDCRF
model. During training and validation, this regularization term was validated
with values 10k, k = −3..3.

Support Vector Machine. As a second baseline, a multi-class SVM was
trained with one label per gesture using a Radial Basis Function (RBF) ker-
nel. Since the SVM does not encode the dynamics between frames, the training
set was decomposed into frame-based samples, where the input to the SVM is
the head velocity or eye gaze at a specific frame. The output of the SVM is
a margin for each class. This SVM margin measures how close a sample is to
the SVM decision boundary [21]. The margin was used to plot the ROC curves.
During training and validation, two parameters were validated: C, the penalty
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parameter of the error term in the SVM objective function, and γ, the RBF
kernel parameter. Both parameters were validated with values 10k, k = −3..3.

Hidden Markov Model. As a third baseline, an HMM was trained for each
gesture class. We trained each HMM with segmented subsequences where the
frames of each subsequence all belong to the same gesture class. This training
set contained the same number of frames as the one used for training the other
models except frames were grouped into subsequences according to their label.
The HMMs trained on subsequences are concatenated into a single HMM with
the number of hidden states equal to the sum of hidden states from each indi-
vidual HMM. For example, if the recognition problem has two labels and each
individual HMM is trained using 3 hidden states, then the concatenated HMM
will have 6 hidden states. To estimate the transition matrix of the concatenated
HMM, we compute the Viterbi path of each training subsequence, concatenate
the subsequences into their original order, and then count the number of transi-
tions between hidden states. The resulting transition matrix is then normalized
so that its rows sum to one. At testing, we apply the forward-backward algorithm
on the new sequence, and then sum at each frame the hidden states associated
with each class label. The resulting HMM can seen as a generative version of our
LDCRF model. During training and validation, we varied the number of states
from 1 to 6 and the number of Gaussians per mixture from 1 to 3.

Latent-Dynamic Conditional Random Field. Our LDCRF model was
trained using the objective function described in [2]. During evaluation, we com-
pute ROC curves using the maximal marginal probabilities of Equation 4. During
training and validation, we varied the number of hidden states per label (from 2
to 6 states per label) and the regularization term (with values 10k, k = −3..3).

4.3 Methodology

In our experiments, the vision-based recognizer was trained and tested using
LDCRF since this model gave the best performance for the visual recognition
task (see [2] for details). The contextual predictors and multi-modal integrator
(also referred as “Fusion” in the result section) were trained using one of the
four models described in the previous subsection. The contextual features were
computed from the dialog context of the avatar using the technique described
in [12].

The experiments were performed using a leave-one-out testing approach. For
validation, we did holdout cross-validation where a subject is randomly picked
from the training set and kept for validation. The optimal validation parameters
were picked based on the equal error rate for the validation set.

The dataset contained an unbalanced number of other-gesture frames. To
have a balanced training set and reduce the training time, the training dataset
was preprocessed to create a smaller training dataset containing an equal num-
ber of other-gesture and transition subsequences. Each transition subsequence
includes frames from one complete gesture subsequence and frames before and
after the gesture labeled as other-gesture. The size of the other-gesture gap
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before and after the gesture was randomly picked between 2 and 50 frames. The
number of transition subsequences was equal to the number of ground truth
gestures in the original training set. Other-gesture subsequences were ran-
domly extracted from the original sequences with length varying between 30-60
frames.

5 Results and Discussion

For the ROC curves shown in this section, the true positive rate is computed by
dividing the number of recognized frames by the total number of ground truth
frames. Similarly, the false positive rate is computed by dividing the number of
falsely recognized frames by the total number of other-gesture frames.

Figure 3 shows the results of Experiment 1 where we compare the LDCRF
vision-only approach with the LDRCF context-based approach. We can see in
this figure that context information does improve recognition of eye gesture. The
ROC curve of LDCRF combining both vision and context is higher than that of
LDCRF using only vision without context. Using t-test analysis, the difference
between the two curves, calculated based on the equal error rates, is statistically
significant (one-tail p = 0.043).
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Fig. 3. Results from Experiment 1 comparing vision-only approach with context-based
recognition using LDCRF models. We can see that dialog context significantly improves
(p-value = 0.043) the gaze aversion recognition performance.
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Fig. 4. Results from Experiment 2 comparing the LDCRF model to SVM, CRF and
HMM models for context-based recognition of gaze aversion. Both the contextual pre-
dictor and the multimodal integrator were trained using the same model. The ROC
curves show the performance of each trained multimodal integrator. LDCRF outper-
forms all three other models with statistically significant differences for SVM and HMM
(p-values equal to 0.0329, and 0.0343 respectively).

Figure 4 shows the results from Experiment 2 where we compare the LDCRF
model to SVM, CRF and HMM models for context-based recognition of gaze
aversion. LDCRF outperforms all three other models (SVM, CRF and HMM)
for context-based recognition. A paired t-test analysis over all tested subjects
returns a one-tail p-value of 0.0329, 0.0717 and 0.0343 when comparing the equal
error rate performance of LDCRF with SVM, CRF and HMM respectively. This
analysis shows statistically significant improvement using the LDCRF model
when compared to both SVM and HMM models.

Figure 5 shows the results of Experiment 3 where we analyze the relative
importance of LDCRF for contextual prediction and multimodal integration by
running a new set of experiments where only the multimodal integrator changes.
The ROC curves in this figure show that LDCRF model outperforms all three
other models. This demonstrates the superiority of LDCRF for the multimodal
integration task. Also, by comparing Figures 4 and 5, we can see that both SVM
and HMM curves improve, confirming the utility of LDCRF as a contextual
predictor.
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Fig. 5. Results from Experiment 3 analyzing the relative importance of LDCRF for
contextual prediction and multimodal integration. Note that the contextual predictor
is the same for all four cases and only the multimodal integrator changes in each case.
This result demonstrates the superiority of LDCRF for the multimodal integration
task and by comparing with Figures 4, we can see that both SVM and HMM curves
improve, confirming the utility of LDCRF as a contextual predictor.

6 Conclusion

In this paper, we investigated how dialog context from an embodied conversa-
tional agent (ECA) can improve visual recognition of eye gestures. We proposed
a new framework for contextual recognition based on Latent-Dynamic Condi-
tional Random Field (LDCRF) models to learn the sub-structure and external
dynamic of contextual cues. Our experiments showed that adding contextual
information improves visual recognition of eye gestures and demonstrated that
LDCRF models for context-based recognition outperform Support Vector Ma-
chines, Hidden Markov Models, and Conditional Random Fields for our visual
feedback recognition tasks.
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Abstract. In this paper we present a meeting state recognizer based on
a combination of multi-modal sensor data in a smart room. Our approach
is based on the training of a statistical model to use semantical cues gen-
erated by perceptual components. These perceptual components generate
these cues in processing the output of one or multiple sensors. The pre-
sented recognizer is designed to work with an arbitrary combination of
multi-modal input sensors. We have defined a set of states representing
both meeting and non-meeting situations, and a set of features we base
our classification on. Thus, we can model situations like presentation or
break which are important information for many applications. We have
hand-annotated a set of meeting recordings to verify our statistical clas-
sification, as appropriate multi-modal corpora are currently very sparse.
We have also used several statistical classification methods for the best
classification, which we validated on the hand-annotated corpus of real
meeting data.

1 Introduction

Today’s applications and interaction systems tend to interact with users at in-
appropriate times as they have no way to determine when such an appropriate
time for the interaction is. Sensor-based statistical models recognizing human
activity in smart environments offer a potential solution to this problem. For
example, a smart room equipped with audio and video sensors may automati-
cally block phone calls for a person engaged in interruption-sensitive tasks such
as presenting a lecture.

In this article, we present an approach to sensor-based statistical meeting state
recognition in smart environments. Multiple aspects of this challenge have been
tackled in past works, based on single modalities like speech features [1] or video
features [2], simple on/off meeting states classification [3], or solving the aspect
of data collection [4]. A recurring issue for such works is the limited sets of data
available for training. Most of the works presented previously consider intra-state
meetings, whereas our approach also classifies breaks and non-meeting times
(extra-meeting data). We needed multi-modal data also presenting such extra-
meeting material, presenting an additional limitation to the usability of existing
corpora like AMI [5], M4 [6] or VACE [7]. We used a meeting corpus from the
CLEAR evaluation [8], that contained all we need but needed annotation. This
is presented in Section 4.1.
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The next section introduces some of the terminology used in our meeting state
detector. Section 3 presents the considered meeting states, the feature extraction
and their selection for the meeting state detection. Section 4 describes the data
we used, what annotations we had to create and how we used it for training
and validation. Section 5 presents the meeting state detector’s performance, and
Section 6 concludes the paper’s findings.

2 The Meeting Recognition Framework

We first introduce the architecture context, in which we carried the meeting
recognition task. Let us describe the framework on a connector scenario proposed
and exploited in [9]. The connector service is responsible for detecting acceptable
interruptions (phone call, SMS, targeted audio . . . ) of a particular person in the
smart room. During the meeting, for example, a member of the audience might
be interrupted by a message during the presentation, whereas the service blocks
any calls for the meeting presenter.

We define the following abstraction levels: sensors, perceptual components, sit-
uation modeling, and services. We assume an information flow from sensors (e.g.,
cameras, microphones) to perceptual components (e.g., body trackers, speech
recognition engines) and finally to situation model and services in a pipelined
fashion. Figure 1 shows a schema of setup used in our experiments.

2.1 Perceptual Components

We suppose that the smart room is equipped with multiple cameras and micro-
phones on the sensor level. The audio and video data are streamed into the
following perceptual components:

– Body Tracker is a video-based component (theoretically it might be also
audio or audio/video based tracking) for tracking 3D position of participants.
It provides 3D coordinates of the head centroid for each person in the room.

– Facial Features Tracker is a video-based component providing informa-
tion about face visibility for each participant. Multiple Facial Feature Track-
ers are running for each camera stream. We use the nose visibility feature in
our setup.

– Automatic Speech Recognition is an audio-based component providing
speech transcription for each participant in the room. In our scenario we
expect the participant’s label with speech transcriptions, through the use of
wearable microphones or speaker identification for far-field microphones.

2.2 Situation Modeling

The situation model is the level transforming a set of facts about the environ-
ment into a set of situations [10]. As shown in Figure 1, the main information
flows from the lower levels to the upper levels. Higher levels represent semanti-
cally higher abstractions.
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Fig. 1. Schema of data flow in the meeting scenario

The set of facts comes from the perceptual components, which collect and ag-
gregate sensor information into entities. Entities—the base representation for
the situation model—are stored in the Entity Repository. In the meeting sce-
nario, the entities are objects from offices or meeting rooms (table, chair, white-
board, PDA, etc.) and the people. Each entity may have a variable number of
attributes, which describe the entity. Examples are Person ID and Location
for a person in the meeting room, or Location and Heading for a (movable)
whiteboard. For each of these entities, the perceptual components send a se-
quence of attribute update events, which we call streams. A stream is relative to
a single attribute of a single entity. The situation model considers these entities
as having a one-to-one mapping to the real world in the modeled environment.

The situation model will use the attributes of the entities provided by the
perceptual components, and infer the current state of a set of situations. Example
of a situation is the Meeting, and its states may be Presentation, Discussion,
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or Break. The situation model will then generate an event, indicating that a
particular situation has changed its state.

The goal of the situation model is to extract semantically higher information
from these facts. This is achieved through situation machines (SM). A situation
machine models a single situation which consists of a set of states, the state of
the situation machine is detected by observing entities in the entity repository
or current states of other situation machines.

In the connector scenario the following situation machines are used:

– Attendance tracks the number of participants (person entities) in the room.
– Motion Detection reports how many participants have moved over a cer-

tain distance threshold in a given time period.
– Heading Tracker infers the heading (head orientation) for each person from

her position and face visibility for all cameras (provided by Facial Features
Tracker).

– Attention Direction tracks the number of participants looking towards the
same spot, using the heading information provided by the Heading Tracker.

– Sitting Detection infers whether a particular person is sitting or not from
the Z (height) coordinate provided by the Body Tracker.

– Crowd Detection searches for crowds of people. A crowd is a group of at
least 3 people where the distance between neighboring participants is less
than a given threshold.

– Talking Activity tracks duration of speech activity and number of speaker
changes in a given period.

– Meeting State Detection infers the current state of the meeting in the
room. It uses information provided by other situation machines with the use
of statistical methods for the meeting state detection described later this
article. The information about the current meeting state and the current
speaker is provided to the Connector service.

Certain situation machines can update attributes of entities in the entity
repository. For example the Heading Tracker SM updates the Heading at-
tribute of person entities, whereas the Sitting Detection SM propagates the
observed sitting or standing position of a participant back to the repository.
These information may be used by other situation machines or can be useful for
the visualization of the current scene.

3 Meeting State Recognition Task

The statistical-model presented in this article is trained to recognize meeting
activity in smart rooms, i.e. a meeting environment equipped with sensors. We
make no assumptions about the shape and dimensions of the meeting space, it
could be a small meeting room or a large lecture hall. Similarly, we set no bounds
on meeting attendance, it may have any number of participants.

The meeting recognizer works on features extracted from the stream of sensor
data. We make the assumption that the smart room’s video and audio sensors,
through the perceptual components, provide at least one of the following streams:
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1. The location of people in the room (2D or 3D coordinates);
2. The head orientation of each person in the room (angle);
3. The speech activity of a person or a group of persons (speech vs. silence, not

transcription).

We designed the recognizer to work with any subset and/or combination of
these sensor streams. This is based on the observed practical consideration that
the above described outputs are generated by independent sensors that may or
may not run at the same time. Thus we wanted our recognizer to work in the
situation where only a body tracker is running in a smart room (case 1), as well
as support the case when a head pose detector and a speech-activity detector
are also available (case 1+2+3).

The meeting states which are of our interest are described in Table 1.

Table 1. Recognized Meeting States

State Description

no meeting empty room, people entering/leaving, drinking coffee

presentation presentation of lecture or seminar is going on

discussion discussion or around-the-table meeting

3.1 Feature Extraction

For the designing, debugging and running the situation modeling we have used
SitCom tool [11]. SitCom (Situation Composer) is a simulator tool and runtime
for the development of context-aware applications and services. SitCom is able
to simulate perceptual and other context acquisition components and allows
the composition of situation models into hierarchies to provide event filtering,
aggregation, and combination.

The SitCom tool was also used for feature extraction; the data coming from
various sensors (e.g. body tracker, speech-silence detector) where proceed by the
set of situation machines producing the corresponding feature vectors, sampled
at defined regular time intervals.

For statistical model training, tuning, and evaluation, we have used the Weka
tool [12], evaluating various statistical modules for classification and feature
selection.

To compute the features, we wrote several situation machines (SM). We have
used all 7 situation machines presented in Section 2.2. Then, the output of each
such SM will be concatenated into a feature vector, that is provided to the meet-
ing state classifier. Note that some of the features from the SMs are fed back into
the entities they emanate from, as they are information that may be reused by
other SMs. Depending on the availability of sensors and perceptual components,
the feature vector may be incomplete, therefore the statistical classification used
in the meeting classifier has to deal with such incomplete information.

SMs are also useful when missing information needs to be inferred. For ex-
ample, the heading of the people was not explicitly included in the meeting
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recordings, so we used each camera’s nose visibility information to compute an
approximate heading.

The feature vectors are generated at regular sampling intervals. We have used
one second interval as it is the frequency of 3D position and facial features
annotations.

3.2 Feature Selection

Feature selection is an iterative process, as both the set of features and the
domain of values have to be selected. We have experimented with continuous
values such as the number of participants, or discrete values such as relative or
proportional number of moving, talking, or sitting participants (none, more than
a third, more than half, all). Parameterized features with boolean values, such
as “Is the number of moving participants higher than half the participants?”,
typically generated better scores than features with proportional value such as
“What is the proportion of moving participants?”.

We also found useful to “discretize” some of the continuous values, for example
the time the current talker speaks has one of the following values: no speech, 10
seconds, 1 minute, 3 minutes, more than 5 minutes.

Finally, trying several attribute selection methods available in Weka, we have
selected 8 of 22 features. Table 2 lists the selected features. The impact of feature
selection is discussed in the next section.

Table 2. Feature Selection

ID mod feature description values selected

1 P Number of participants number yes
2 P Number of moving participants > 1 true/false no
3 P Proportion of moving participants >1/3 true/false no
4 P Proportion of moving participants >1/2 true/false yes
5 P Number of sitting participants > 1 true/false no
6 P Proportion of sitting participants >1/3 true/false no
7 P Proportion of sitting participants >1/2 true/false yes
8 P Number of people crowds number no
9 H Number of attention directions number no
10 H Proportion of people looking same direction >1/3 true/false no
11 H Proportion of people looking same direction >1/2 true/false yes
12 H Proportion of people looking same direction > 90% true/false no
13 H Proportion of people looking same direction = 100% true/false no
14 H Crowds Concentration true/false no
15 S Number of talking participants number no
16 S Number of speaker changes in last 2s rel. num. no
17 S Number of speaker changes in last 5s rel. num. no
18 S Number of speaker changes in last 20s rel. num. yes
19 S Did the speaker changed in last 2s true/false yes
20 S Did the speaker changed in last 5s true/false yes
21 S Did the speaker changed in last 20s true/false no
22 S Time the current talker speaks time intervals yes
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The features and results are separated into three categories, based on the
available perceptual components (or annotations in our case), i.e. position (P),
heading (H), and speech activity (S).

4 Data Collection and Annotation

4.1 CLEAR Corpus

The corpus we use in our experiments was created for the purpose of the CLEAR
evaluation task [8]. We found that this corpus is the only data set that pro-
vides multi-modal, multi-sensory recordings of realistic human behavior and in-
teraction in the meeting scenarios. We have used 5 seminars prepared for the
CLEAR 2007 evaluation campain and 1 seminar from CLEAR evaluation 2006.
The total length of the recordings is 1 hour 51 minutes, and it includes rich
manual annotations of both audio and visual modalities. In particular, it con-
tains a detailed multi-channel transcription of the audio recordings that includes
speaker identification, and acoustic condition information. Video labels provide
multi-person head location in the 3D space, as well as information about the 2D
face bounding box and facial feature locations visible in all camera views.

We have also checked other recently collected corpora, such as the AMI
project, M4 corpus, and VACE project (reference in the Introduction Section),
but these corpora are either limited to a single data collection site or contain
scripted scenarios with static interaction among the meeting participants. They
do not contain enough non-meeting material either, therefore, these data sets
were not suitable for our task.

4.2 Meeting State Annotation

As the CLEAR recording does not include the meeting state annotation, we
ask three human annotators to label the corpus by the appropriate meeting
states. They were provided with sequences of camera pictures and schematic
visualization figures of the observed attributes provided directly by the manual
annotation or inferred by special situation machines (Heading Tracker SM and
Sitting Detection SM ), i.e.:

1. The location of people in the room (2D or 3D coordinates);
2. The head orientation of each person in the room (angle);
3. Information if the person is sitting or standing;
4. The speech activity of a person or a group of persons (speech vs. silence,

transcription not used).

Their task was to identify one of the meeting state described in Table 1.
Figure 2 shows the schematic visualization and corresponding pictures provided
to the annotators (for presentation and break state). We can see the position
and heading of each participant, visible legs for sitting persons, and highlighted
bubbles for talking persons. Bubbles display persons IDs or names, if they are
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presentation

no meeting / break

Fig. 2. Screenshots of presentation and break in the UPC’06 recording

Table 3. Inter-anotator agreement (in %) for the first-round annotations

A1 x A2 A3 x A2 A3 x A1

AIT’07 43.00 71.75 60.50
IBM’07 87.61 78.96 72.98
ITC’07 74.25 75.75 97.75
UKA’07 62.50 57.83 89.33
UPC’06 78.08 65.20 84.19
UPC’07 87.89 82.12 81.69

average 72.22 71.60 81.07

know to the system. For annotators convenience, objects like table, whiteboard,
or door are also displayed in the schematic view, though they are not used for
the experiments.

We found that the annotation of meeting states was not straightforward, as it
can be seen on the inter-annotator agreement measure for individual recordings
presented in the Table 3. Therefore we have decided to create a gold annotation
by reviewing the disagreed sections. The gold annotation was then used in our
experiments.
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4.3 Data Split

We have divided the data set into two parts of similar size, one for training
and other for evaluation. The training part consists of the ITC’07, UKA’07 &
UPC’07 seminars. The IBM07, AIT07 & UPC06 seminars are in the evaluation
part. Table 4 shows the length of the individual recordings, number of generated
feature vectors and the data set they are belonging to.

Table 4. Data sizes of recordings used for training or evaluation

length feature vectors data set

AIT’07 20 min 1200 evaluation
IBM’07 20 min 1200 evaluation
ITC’07 20 min 1200 training
UKA’07 20 min 1200 training
UPC’06 13 min 780 evaluation
UPC’07 23 min 1380 training

5 The Resulting Model

We have decided to present the results separately for several categories of “mo-
dality”, assuming that all the perceptual components or sensors may not be
available in a particular room configuration. The modalities are: position (P),
heading (H), and speech activity (S).

5.1 Selecting the Model

In parallel with the feature extraction and selection process we have also been
searching for the statistical model which provides the most relevant results for
our classification task. Table 5 shows the percentage of correctly classified in-
stances (10-fold cross-validation) using the selected features on training scenarios
for the following classifiers: a zero rule classifier, a simple classifier that always
predicts the most likely meeting state, as observed in training data, a Bayesian
network with the structure trained from data, a decision-tree based classifier
(C4.5 ), and a random forest classifier. For details about these classifiers and
their parameters please refer to [12].

Among the tested methods we have identified the random forest classifier as
the most reliable for our task. This was an expected result, as the random forest

Table 5. Comparison of Different Classification Methods

modality P PH PS PHS

Zero Rule 72.72 72.72 72.72 72.72
Bayesian Network 77.07 78.39 82.77 82.98
C4.5 Classifier 77.65 78.53 82.32 83.35
Random Forest 77.86 79.48 83.14 84.09
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(forest of decision trees) can better adapt to sparse data than the single decision
tree in a C4.5 classifier or the fixed network structure in a Bayesian network.

5.2 Evaluation of Results

We evaluate the results on the evaluation part of CLEAR data (IBM07, AIT07
& UPC06 seminars). In Table 6, we present the results for model (random forest
classifier) build on training data and applied to the evaluation data with the
selection of features (A) listed in Table 2. For the comparison, we also present
results with the full set of features (B), figures for simple zero rule classifier (C)
and for a 10-fold cross-validation of the evaluation data for selected features (D).
Numbers are the percentage of correctly classified instances for different types
of perceptual input.

Table 6. Results on evaluation scenarios

model/evaluation P PH PS PHS 2 states

trained & evaluated on selected features (A) 72.23 71.50 76.60 76.96 95.91
trained & evaluated on all features (B) 73.31 71.22 76.86 75.68 95.84

zero rule for evaluation data (C) 67.06 67.06 67.06 67.06 87.32

cross-validation on evaluation data (D) 78.06 78.76 81.96 82.94 98.92

The numbers for the zero rule classifier on evaluation data (C) and for the
cross-validation on evaluation data (D) can be seen as lower and upper bounds
for this task. The feature selection shows improvement for the system with all
perceptual inputs available, i.e. modalities: position + heading + speech (PHS).
Decrease of reliability for other combinations of modalities is due the fact that
the selection of features was performed on the full set of modalities.

Adding the speech modality consistently improves the results on real data thus
confirming our expectations. The resulting model yields a system performing
significantly better than the simple classifier that always predicts the most likely
value.

Both the classification method and the human annotator were uncertain in
distinguishing between presentation and discussion states. The last column (la-
beled ‘2 states’) of Table 6 shows figures for two states only (meeting / no
meeting) with a full set of modalities (PHS). In this case, presentation and
discussion states are labeled and evaluated as one state called meeting.

We believe that the performance is reasonable for the intended use.

6 Conclusions

A step in the direction of full-automatic meeting annotation has been presented
in this document. We have developed a technique to use multiple modalities for
the automatic segmentation of activities in a smart room into several meeting
and non-meeting states.
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Our approach differs from previous works in that it bases the state detection
on the output of perceptual components, which do some processing and com-
bination of sensor outputs. Such perceptual components produce facts about
people’s presence, location, pose, and voice activity in the room. These facts
may themselves be the result of the analysis of multiple sensors. Then, we used
a situation model to statistically detect the current activity in the room from the
set of facts delivered by these perceptual components. Finally, from the room
activities we compute the meeting state.

Annotated meetings providing both meeting and non-meeting material in mul-
tiple modalities are currently very sparse, so we had to annotate ourselves some
data to verify our algorithms. This has been done on the CLEAR dataset, that
is the only one we found that provides multimodal non-meeting material. This
new corpus has been used to validate our results, and has shown to be able to
classify the meeting status correctly in 77% of the cases, for a data set where
the inter-annotator agreement is between 71% and 81% depending on the anno-
tators.
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Abstract. Multimodal scene understanding is an integral part of human-
robot interaction (HRI) in situated environments. Especially useful is
category-level recognition, where the the system can recognize classes of
objects of scenes rather than specific instances (e.g., any chair vs. this
particular chair.) Humans use multiple modalities to understand which
object category is being referred to, simultaneously interpreting gesture,
speech and visual appearance, and using one modality to disambiguate
the information contained in the others. In this paper, we address the
problem of fusing visual and acoustic information to predict object cat-
egories, when an image of the object and speech input from the user
is available to the HRI system. Using probabilistic decision fusion, we
show improved classification rates on a dataset containing a wide variety
of object categories, compared to using either modality alone.

Keywords: multimodal fusion, object recognition, human-computer
interaction.

1 Introduction

Multimodal recognition of object categories in situated environments is useful
for robotic systems and other applications. Information about object identity
can be conveyed in both speech and image. For example, if the user takes a
picture of a cylindrical object and says: “This is my pen,” a machine should be
able to recognize the object as belonging to the class “pen”, and not “pan”, even
if the acoustic signal was too ambiguous to make that distinction. Conventional
approaches to object recognition rely either on visual input or on speech input
alone, and therefore can be brittle in noisy conditions. Humans use multiple
modalities for robust scene understanding, and artificial systems should be able
to do the same.

The conventional approach to image-based category recognition is to train
a classifier for each category offline, using labeled images. Note that category-
level recognition allows the system to recognize a class of objects, not just single
instances. To date, automatic image-based category recognition performance has
only reached a fraction of human capability, especially in terms of the variety of
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Fig. 1. Examples of the most visually confusable categories in our dataset (see Section 4
for a description of the experiments). The image-based classifier most often misclassified
the category on the left as the category on the right.

recognized categories, partly due to lack of labeled data. Accurate and efficient
off-the-shelf recognizers are only available for a handful of objects, such as faces
and cars. In an assistant robot scenario, the user would have to collect and
manually annotate a database of sample images to enable a robot to accurately
recognize the objects in the home.

A speech-only approach to multimodal object recognition relies on speech
recognition results to interpret the categories being referred to by the user. This
approach can be used, for example, to have the user “train” a robot by providing
it with speech-labeled images of objects. Such a system is described in [9], where
a user can point at objects and describe them using natural dialogue, enabling
the system to automatically extract sample images of specific objects and to
bind them to recognized words. However, this system uses speech-only object
category recognition, i.e. it uses the output of a speech recognizer to determine
object-referring words, and then maps them directly to object categories. It does
not use any prior knowledge of object category appearance. Thus, if the spoken
description is misrecognized, there is no way to recover, and an incorrect object
label may be assigned to the input image (e.g., “pan” instead of “pen”.) Also,
the robot can only model object instances that the user has pointed out. This
places a burden on the user to show the robot every possible object, since it
cannot generalize to unseen objects of the same category.
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We propose a new approach, which combines speech and visual object cat-
egory recognition. Rather than rely completely on one modality, which can be
error-prone, we propose to use both speech- and image-based classifiers to help
determine the category of the object. The intuition behind this approach is that,
when the categories are acoustically ambiguous due to noise, or highly confusable
(e.g., “budda” and “gouda”), their visual characteristics may be distinct enough
to allow an image-based classifier to correct the speech recognition errors. Even
if the visual classifier is not accurate enough to choose the correct category from
the set of all possible categories, it may be good enough to choose between a
few acoustically similar categories. The same intuition applies in the other di-
rection, with speech disambiguating confusable visual categories. For example,
Figure 1 shows the categories that the visual classifier confused the most in our
experiments.

There are many cases in the human-computer interaction literature where
multimodal fusion helps recognition (e.g. [12], [10]). Although visual object cat-
egory recognition is a well-studied problem, to the best of our knowledge, it has
not been combined with speech-based category recognition. In the experimental
section, we use real images, as well as speech waveforms from users describing
objects depicted in those images, to see whether there is complementary infor-
mation in the two channels. We propose a fusion algorithm based on probabilistic
fusion of the speech and image classifier outputs. We show that it is feasible, us-
ing state-of-the-art recognition methods, to benefit from fusion on this task. The
current implementation is limited to recognizing about one hundred objects, a
limitation due to the number of categories in the labeled image database. In the
future, we will explore extensions to allow arbitrary vocabularies and numbers
of object categories.

2 Related Work

Multimodal interaction using speech and gesture dates back to Bolt’s Put-That-
There system [1]. Since that pioneering work, there have been a number of
projects on virtual and augmented-reality interaction combining multiple modal-
ities for reference resolution. For example, Kaiser, et. al. [10] use mutual disam-
biguation of gesture and speech modalities to interpret which object the user is
referring to in an immersive virtual environment. Our proposed method is com-
plimentary to these approaches, as it allows multimodal reference to objects in
real environments, where, unlike in the virtual reality and game environments,
the identity of surrounding objects is unknown and must be determined based
on visual appearance.

Haasch, et. al. [9] describe a robotic home tour system called BIRON that can
learn about simple objects by interacting with a human. The robot has many
capabilities, including navigation, recognizing intent-to-speak, person tracking,
automatic speech recognition, dialogue management, pointing gesture recogni-
tion, and simple object detection. Interactive object learning works as follows:
the user points to an object and describes what it is (e.g., “this is my cup”). The
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system selects a region of the image based on the recognized pointing gesture
and simple salient visual feature extraction, and binds that region to the object-
referring word. Object detection is performed by matching previously learned
object images to the new image using cross-correlation. The system does not
use pre-existing visual models to determine the object category, but rather as-
sumes that the dialogue component has provided it with the correct words. Note
that the object recognition component is very simple, as this work focuses more
on a human-robot interaction (HRI) model for object learning than on object
recognition.

The idea of disambiguating which object the user is referring to using speech
and image recognition is not new. In [13], the authors describe a visually-
grounded spoken language understanding system, an embodied robot situated
on top of a table with several solid-colored blocks placed in front of it on a green
tablecloth. The robot learns by pointing to one of the blocks, prompting the
user to provide a verbal description of the object, for example: “horizontal blue
rectangle”. The paired visual observations and transcribed words are used to
learn concepts like the meaning of “blue”, “above”, “square”. The key difference
between this work and [13] is that we focus on a realistic object categorization
task, and on disambiguating among many arbitrary categories using prior visual
models.

There is a large body of work on object recognition in the computer vision
literature, a comprehensive review of which is beyond the scope of this paper.
Here we only review several recent publications that focus on object presence
detection, where, given an image, the task is to determine if a particular object
category is present, and on object classification, where the task is to determine
which one out of C categories is present in the image.

Murphy, et. al. present a context-sensitive object presence detection method
[11]. The overall image context gives the probability of the object being present
in the image, which is used to correct the probability of detection based on the
local image features. The authors show that the combination of experts based
on local and global image features performs better than either expert alone. Our
proposed disambiguation method is somewhat similar to this, except that, in
our case, the two experts operate on speech and global image features.

The current best-performing object classification methods on Caltech 101 [3],
the image database we use in our experiments, are based on discriminative multi-
class classifiers. In [5], a nearest-neighbor classifier is used in combination with a
perceptual distance function. This distance function is learned for each individual
training image as a combination of distances between various visual features. The
authors of [15] use a multi-class support vector machine (SVM) classifier with
local interest point descriptors as visual features. We use the method of [6],
which is also based on a multi-class SVM, but in combination with a kernel that
computes distances between pyramids of visual feature histograms.

There has been some recent interest in using weakly supervised cross-modal
learning for object recognition. For example, Fergus et al. [4] learn object cate-
gories from images obtained using a Google search for keywords describing the
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categories of interest. While, in this paper, we describe a supervised approach,
we are also interested in exploring the idea of learning visual category classifiers
in an unsupervised fashion, perhaps using web-based image search for keywords
corresponding to the top speech hypotheses. This would allow an arbitrary vo-
cabulary of object-referring words to be used, without requiring that a labeled
image database exists for each word in the vocabulary.

3 Speech and Image-Based Category Recognition

In this section, we describe an algorithm for speech and image-based recognition
of object categories. We assume a fixed set of C categories, and a set W of
nouns (or compound nouns), where Wk corresponds to the name of the kth
object category, where k = 1, ..., C.

The inputs to the algorithm consist of a visual observation x1, derived from
the image containing the object of category k, and the acoustic observation
x2, derived from the speech waveform corresponding to Wk. In this paper, we
assume that the user always uses the same name for an object category (e.g.,
“car” and not “automobile”.) Future work will address an extension to multiple
object names. A simple extension would involve mapping each category to a list
of synonyms using a dictionary or an ontology such as WordNet.

The disambiguation algorithm consists of decision-level fusion of the outputs
of the visual and speech category classifiers. In this work, the speech classifier is
a general-purpose recognizer, but its vocabulary is limited to the set of phrases
defined by W . Decision-level fusion means that, rather than fusing information
at the observation level and training a new classifier on the fused features x =
x1, x2, the observations are kept separate and the decision of the visual-only
classifier, f1(x1), is fused with the decision of the speech-only classifier, f2(x2).
In general, decisions can be in the form of the class label k, posterior probabilities
p(c = k|xi), or a ranked list of the top N hypotheses.

There are several methods for fusing multiple classifiers at the decision level,
such as letting the classifiers vote on the best class. We propose to use the
probabilistic method of combining the posterior class probabilities output by
each classifier. We investigate two combination rules. The first one, the weighted
mean rule, is specified as:

p(c|x1, ..., xm) =
m∑

i=1

p(c|xi)λi, (1)

where m is the number of modalities, and the weights λi sum to 1 and indicate
the “reliability” of each modality. This rule can be thought of as a mixture of
experts. The second rule is the weighted version of the product rule,

p(c|x1, ..., xm) =
m∏

i=1

p(c|xi)λi (2)

which assumes that the observations are independent given the class, which is
a valid assumption in our case. The weights are estimated experimentally by
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enumerating a range of values and choosing the one that gives the best perfor-
mance. Using one of the above combination rules, we compute new probabilities
for all categories, and pick the one with the maximum score as the final category
output by the classifier.

Note that our visual classifier is a multi-class SVM, which returns margin
scores rather than probabilities. To obtain posterior probabilities p(c = k|x2)
from decision values, a logistic function is trained using cross-validation on the
training set. Further details can be found in [2].

4 Experiments

If there is complementary information in the visual and spoken modalities, then
using both for recognition should achieve better accuracy than using either one
in isolation. The goal of the following experiments is to use real images, as well as
recordings of users describing the objects depicted in those images, to see if such
complementarity exists. Since we are not aware of any publicly available databases
that contain paired images and spoken descriptions, we augmented a subset of an
image-only database with speech by asking subjects to view each image and to
speak the name of the object category it belongs to. Using this data, we evaluate
our probabilistic fusion model. We investigate whether weighting the modalities
is advantageous, and compare the mean and product combination rules.

Image Dataset. Most publicly available image databases suitable for catego-
ry-level recognition contain very few object categories. The exceptions include
the PASCAL, LabelMe, Caltech101, ESP and Peekaboom databases, which are
described in [14]. We chose to use the Caltech101 database, because it contains a
large variety of categories, and because it is a standard benchmark in the object
recognition field. The database has a total of 101 categories, with about 50
images per category. Although the categories are challenging for current object
recognition methods, the task is made somewhat easier by the fact that most
images have little or no background clutter, and the objects tend to be centered
in the image and tend to be in a stereotypical pose. Sample images from each of
the 101 categories are shown in Figure 4.

Speech Collection. We augmented a subset of the images with spoken ut-
terances recorded in our lab, to produce a test set of image-utterance pairs on
which to evaluate the fusion method. We chose the set of names W based on the
names provided with the image database, changing a few of the names to more
common words. For example, instead of “gerenuk”, we used the word “gazelle”,
and so on. The exact set of names W is shown in Figure 4. A total of 6 subjects
participated in the data collection, 4 male and 2 female, all native speakers of
American English. Each subject was presented with 2 images from each category
in the image test set, and asked to say the exact object name for each image,
resulting in 12 utterances for each category, for a total of 1212 image-utterance
pairs. The reason that the images were shown, as opposed to just prompting
the subject with the category name, is that some names are homonyms (e.g.,
here “bass” refers to the fish, not the musical instrument), and also to make the



42 K. Saenko and T. Darrell

experience more natural. The speech data collection took place in a quiet office,
on a laptop computer, using its built-in microphone.

The nature of the category names in the Caltech101 database, the controlled
environment, and the small vocabulary makes this an easy speech recognition
task. The speech recognizer, although it was trained on an unrelated phone-
quality audio corpus, achieved a word error rate (WER) of around 10% when
tested on the collected category utterances. In realistic human-computer interac-
tion scenarios, the environment can be noisy, interfering with speech recognition.
Also, the category names of everyday objects are shorter, more common words
(e.g. “pen” or “pan”, rather than “trilobite” or “mandolin”), and the their vocab-
ulary is much larger, resulting in a lot more acoustic confusion. Our preliminary
experiments with large-vocabulary recognition of everyday object names, using
a 25K-phrase vocabulary, produced WERs closer to 50%. Thus, to simulate a
more realistic speech task, we added “cocktail party” noise to the original wave-
forms, using increasingly lower signal-to-noise ratios (SNRs): 10db, 4db, 0db,
and -4db. For the last two SNRs, the audio-only WERs are in a more realistic
range of around 30-60%.

Training of Classifiers. We trained the image-based classifier on a standard
Caltech101 training set, consisting of the first 15 images from each category,
which are different from the test images mentioned above. The classification
method is described in detail in [6], here we only give a brief overview. First,
a set of feature vectors is extracted from the image at each point on a regular
8-by-8 grid. A gradient direction histogram is computed around each grid point,
resulting in a 128-dimensional SIFT descriptor. The size of the descriptor is re-
duced to 10 dimensions using principal component analysis, and the x,y position
of the point is also added, resulting in a 12-dimensional vector. Vector quantiza-
tion is then performed on the feature space [7], and each feature vector (block)
of the image is assigned to a visual “word”. Each image is represented in terms
of a bag (histogram) of words. Two images can then be matched using a special
kernel (the pyramid match kernel) over the space of histograms of visual words.
Classification is performed with a multi-class support vector machine (SVM) us-
ing the pyramid match kernel. Our implementation uses a one-vs-rest multi-class
SVM formulation, with a total of C binary SVMs, each of which outputs the
visual posterior probabilities p(c = k|x1) of the class given the test image.

The speech classifier is based on the Nuance speech recognizer, a commer-
cial, state-of-the-art, large-vocabulary speech recognizer. The recognizer has pre-
trained acoustic models, and is compiled using a grammar, which we set to be
the set of object names W , thus creating an isolated phrase recognizer with a
vocabulary of 101 phrases. This recognizer then acts as the speech-based clas-
sifier in our framework. The recognizer returns an N-best list, i.e. a list of N
most likely phrase hypotheses k = k1, ..., kN , sorted by their confidence score.
We use normalized confidence scores as an estimate of the posterior probability
p(c = k|x2) in Equations 1, 2. For values of k not in the N-best list, the probabil-
ity was set to 0. The size of the N-best was set to 101, however, due to pruning,
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Fig. 2. Object classification using the mean rule, on the development set. Each line
represents the performance on a different level of acoustic noise. The y-axis shows the
percent of the samples classified correctly, the x-axis plots the speech weight used for
the combined classifier.

most lists were much shorter. The accuracy is measured as the percentage of
utterances assigned the correct category label.

Development and Test Sets. The test set of image-utterance pairs was further
split randomly into a development set and test set. The development set was
used to optimize the speech weight. All experiments were done by averaging
the performance over 20 trials, each of which consisted of randomly choosing
half of the data as the development set, optimizing the weight on it, and then
computing the performance with that weight on the rest of the data.

Results. First, we report the single-modality results. The average accuracy ob-
tained by the image-based classifier, measured as the percentage of correctly
labeled images, was 50.7%. Chance performance on this task is around 1%. Note
that it is possible to achieve better performance (58%) by using 30 training im-
ages per category [8], however, that would not leave enough test images for some
of the categories. The average 1-best accuracy obtained by the speech classifier
in the clean audio condition was 91.5%. The oracle N-best accuracy, i.e. the ac-
curacy that would be obtained if we could choose the best hypothesis by hand
from the N-best list, was 99.2%.
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Fig. 3. Absolute improvement across noise conditions on the test set. The Y-axis
shows the percent of the test samples classified correctly, the X-axis shows the SNR of
the noise condition. Chance performance is around 1%.

Next, we see how the fused model performs on different noise levels.
Figure 2 shows the results of the fusion algorithm on the development set, us-
ing the mean combination rule. The plot for the product rule, not shown here,
is similar. Each line represents a different level of acoustic noise, with the top
line being clean speech, and the bottom line being the noisiest speech with -
4db SNR. The x-axis plots the speech model weight λ2 in increments of 0.1,
where λ1 + λ2 = 1. Thus, the leftmost point of each line is the average image-
only accuracy, and the rightmost point is the speech-only accuracy. As expected,
speech-only accuracy degrades with increasing noise. We can see that the fusion
algorithm is able to do better than either single-modality classifier for some set-
ting of the weights. The product combination rule gives similar performance to
the mean rule. We also see that the weighted combination rule is better than
not having weights (i.e. setting each weight to 0.5). The average accuracy on
the test set, using the weight chosen on the development set for each noise con-
dition, is plotted in Figure 3. The plot shows the gains that each combination
rule achieved over the single modality classifiers. The mean rule (red line) does
slightly better than the product rule (green line) on a number of noise con-
ditions, and significantly better than the either speech or vision alone on all
conditions.
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Fig. 4. Sample images from the Caltech101 database. The category name used in our
experiments is shown at the top of each image

5 Conclusion and Future Work

We presented a multimodal object category classifier that combines image-only
and speech-only hypotheses in a probabilistic way. The recognizer uses both the
name of the object and its appearance to disambiguate what object category the
user is referring to. We evaluated our algorithm on a standard image database of
101 object categories, augmented with recorded speech data of subjects saying
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the name of the objects in the images. We have simulated increasingly difficult
speech recognition tasks by adding different levels of noise to the original speech
data. Our results show that combining the modalities improves recognition across
all noise levels, indicating that there is complementary information provided by
the two classifiers. To avoid catastrophic fusion, we have proposed to use the
weighted version of the mean rule to combine the posterior probabilities, and
showed experimentally that there exists a single weight that works for a variety
of audio noise conditions. We have thus shown that it may be advantageous for
HRI systems to use both channels to recognize object references, as opposed to
the conventional approach of relying only on speech or only on image recognition,
when both are available.

We regard this work as a proof of concept for a larger system, the first step
towards multimodal object category recognition in HRI systems. We plan to
continue this line of research, extending the model to handle multiple words
per category, and, eventually, to extract possible object-referring words from
natural dialogue. A simple extension to handle multiple object names is to map
each category to a list of synonyms using a dictionary or an ontology such as
WordNet. We are also interested in enabling the use of arbitrary vocabularies
by learning visual category classifiers in an unsupervised fashion, using methods
similar to [4]. With this approach, web-based image search would be conducted
for keywords corresponding to words in the N-best list output by the speech
recognizer. The returned images could then be used to build visual models for
disambiguation of arbitrary objects.
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Abstract. In [1,2], we presented a method for automatic detection of
action items from natural conversation. This method relies on supervised
classification techniques that are trained on data annotated according to
a hierarchical notion of dialogue structure; data which are expensive and
time-consuming to produce. In [3], we presented a meeting browser which
allows users to view a set of automatically-produced action item sum-
maries and give feedback on their accuracy. In this paper, we investigate
methods of using this kind of feedback as implicit supervision, in or-
der to bypass the costly annotation process and enable machine learning
through use. We investigate, through the transformation of human anno-
tations into hypothetical idealized user interactions, the relative utility
of various modes of user interaction and techniques for their interpreta-
tion. We show that performance improvements are possible, even with
interfaces that demand very little of their users’ attention.

1 Introduction

Few communicative events in a working day are more important than group de-
cisions committing to future action. These events mark concrete progress toward
shared goals, and are the bread and butter of face-to-face meetings. However,
information produced in conversation is frequently forgotten or mis-remembered
due to the limited means of memory, attention, and supporting technologies.
Organizations are unable to review their own internal decisions, and individuals
forget their own commitments. This information loss seriously impacts produc-
tivity and causes enormous financial hardship to many organizations [4].

The primary objective of our research is to assist meeting participants by au-
tomatically identifying action items in meetings: public commitments to perform
some concrete future action. Some related work has sought to classify individual
utterances or sentences as action-item-related [5,6,7,8,9]. These approaches have
limited success when applied to multi-party conversational speech: individual
utterances often do not contain sufficient information, as commitment arises not
through utterances in isolation but through the dialogue interaction as a whole.

In contrast, our approach [1,2] employs shallow local dialogue structure, iden-
tifying short subdialogues and classifying the utterances within them as to their
role in defining the action item. This approach improves accuracy and allows
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extraction of specific information about individual semantic properties of the
action item (such as what is to be done and who has agreed to take responsi-
bility for it). However, one negative consequence of this approach is that data
needs to be annotated with this structure – a complex and costly process.

In this paper we investigate the use of user interaction (in combination with
classifier outputs) to automatically annotate previously unseen data, thus pro-
ducing new training data and enabling a system to learn through use alone.

1.1 Action Item Detection

Our methods for annotating action items and automatically detecting them rely
on a two-level notion of dialogue structure. First, short sequences of utterances
are identified as action item discussions, in which an action item is discussed and
committed to. Second, the utterances within these subdialogues are identified as
belonging to zero or more of a set of four specific dialogue act types that can be
thought of as properties of the action item discussion: task description (proposal
or discussion of the task to be performed), timeframe (proposal or discussion
of when the task should be performed), ownership (assignment or acceptance of
responsibility by one or more people), and agreement (commitment to the action
item as a whole or to one of its properties). A description of the annotation
schema and classification method may be found in [1].

1.2 Data Needs and Implicit User Supervision

Because dialogue annotation is resource-intensive, we are interested in methods
for producing annotated data with minimal human effort. Additionally, the char-
acteristics of action item discussion vary substantially across users and meeting
types. We therefore would like the system to learn “in the wild” and adapt to
new observations without the need for any human annotation.

Rather, we would prefer to use implicit user supervision by harnessing subtle
user interactions with the system as feedback that helps to improve performance
over time. Implicit supervision of this kind has proved effective for topic seg-
mentation and identification in meetings [10].

Figure 1 shows a broad view of our architecture for using implicit supervision.
First, a set of utterance classifiers detects the action-item-related dialogue acts in
a meeting and tags them. Then a subdialogue classifier identifies patterns of these
tagged utterances to hypothesize action items. The relevant utterances are then
fed into a summarization algorithm suitable for presentation in a user interface.
From the interface, a user’s interactions with the summarized action items can
be interpreted, providing feedback to a feedback interpreter that updates the
hypothesized action items and utterance tags, which are ultimately treated as
annotations that provide new training data for the classifiers.

1.3 User Interfaces for Meeting Assistance

The following question now arises: What kinds of interfaces could harness user
feedback most effectively?
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Fig. 1. An outline of the action item detection and feedback system

In [3], we described a meeting browser that allows participants to view a set of
automatically hypothesized action item summaries after a meeting. Participants
can confirm a hypothesized action item by adding it to a to-do list, or reject
it by deleting it. They can also change the hypothesized properties (the who,
what, and when for the action item) by selecting from alternate hypotheses or
changing text directly. While a number of meeting browser tools allow users to
inspect different facets of information that might be gleaned from a meeting (see
[11] for an overview), our browser tool was specifically designed to harvest these
ordinary user interactions for implicit user feedback.

Specifically, our browser is designed to verify two types of information: the
time when an action item discussion occurred, and its description in text—
gleaned from the language used in conversation—that contributes to our un-
derstanding of the action item’s properties. Different feedback actions may give
different information about each of these types. For example, overall confirma-
tion tells us that the extracted text descriptions were adequate, and therefore
implicitly confirms that the time period used to extract that text must also have
been correct. Similarly, editing just one property of a hypothesized action item
might tell us that the overall time period was correct, but that one aspect of the
extracted text could have been better.

The distinction between temporal and textual information is important, since
it is not clear which of these provides the most benefit for creating new accurate
training data. And interfaces that emphasize one or the other may vary in their
usefulness and cognitive demands. Certain common types of “meeting interfaces”
(like handwritten notes or to-do lists) may provide information about the text
of an action item, but not about the time it was discussed. Other in-meeting
interfaces could provide temporal information instead of or in addition to text,
such as flags or notes made during the meeting using a PDA, a digital pen, or
electronic note-taking software like SmartNotes [12].

The distinction between user- and system-initiative is also important. A
system-initiative approach might be to identify action items to the user while the
meeting is ongoing, perhaps by popping up a button on a PDA which the user
can confirm or reject. However, a user-initiative approach – allowing the user to
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either take notes or flag parts of the meeting where action item discussions occur
– might provide more independent information, though perhaps at the cost of
higher cognitive demands on the user. So this third characteristic of initiative,
in addition to the temporal and textual characteristics, could have a profound
effect on the quality of supervision a user can provide as it relates to producing
valuable annotations.

Thus, we wish to address two basic questions in this paper. First, to what
extent do the two informational types of time and text contribute to producing
valuable data for implicit supervision of action item detection? Second, does
user- or computer- initiative produce more valuable information?

2 Method

2.1 Outline

Our goal is to investigate the efficacy of various methods of learning from im-
plicit human supervision by comparing various possible user interfaces that offer
users different capabilities for providing feedback. But rather than implement
all of these possible interfaces to record real feedback data, we compare the best
possible results that each notional interface could achieve, given an “ideal” user.
We simulate this ideal user by using our existing gold-standard annotations and
positing them as user feedback. That is, we use varying amounts of the infor-
mation provided by our gold-standard annotations in an attempt to reproduce
those annotations in their entirety.

The procedure involves the following steps. First, a baseline classifier is trained
on an initial set of human annotations of action items. That classifier then pro-
duces action item hypotheses for a second set of meetings, the learning set. Next,
for each notional user interface, we translate our gold-standard human annota-
tions of the learning set into idealized user feedback interactions – rejecting,
adding, or otherwise editing the action items – while constraining the types of
feedback information (time, text, and initiative) to comply with the constraints
afforded by each interface.

These idealized interactions are then used to modify (“correct”) our
automatically-generated action item hypotheses from the learning set, producing
a new updated set of hypotheses that are used as new training data. The accu-
racy of this updated set can be evaluated by comparing its corrected hypotheses
to the existing human annotations. We can also evaluate the effect of our feed-
back on the classifiers by retraining them on the union of the initial dataset and
the updated dataset, and then testing then again on a third, held-out test set.

2.2 Datasets

For our experiments we use 18 meetings selected from the ICSI Meeting Cor-
pus [13]. The ICSI corpus contains unscripted natural meetings, most of which
are recordings of regularly occurring project group meetings. We have anno-
tated a series of 12 meetings held by the Berkeley “Even Deeper Understanding”
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project group (code Bed) and an additional 6 meetings selected randomly from
the rest of the corpus. There are a total of 177 action items in the 18 meetings,
with 944 total utterances tagged. This makes an average of 9.8 action items per
meeting and 5.3 utterances per action item.

We distribute the meetings randomly into the three sets described above:
an initial set of meetings for training the baseline classifier, a learning set of
meetings which the system will encounter “in the wild” and learn from through
user feedback, and a test set used for an overall performance evaluation. Each
of these sets has an equal proportion of meetings from the Bed series. These sets
and their human annotations can be summarized as:

– An initial set of meetings I, and the set of human annotations DIH

– A learning set of meetings L, and the set of human annotations DLH

– A test set of meetings T , and the set of human annotations DTH

2.3 Baseline Experiments with No User Input

Using the test set for evaluation, we compare the performance of the re-trained
classifiers to three baseline measures, in which the user is not a factor. The
first baseline, Initial-only, assumes no means of obtaining user input on the L
meetings at all, and thus provides an expected lower bound to the performance:
we simply ignore L and train classifiers only on I. The second, Optimal, is a
ceiling which provides an upper bound by assuming perfect annotation of the
L meetings: we train the classifiers on human annotations of both I and L.
Finally, the third baseline, Naively-retrained, examines the effect of retraining the
classifier on its own output for L (the automatically-produced hypotheses DLA)
without modification by user feedback. The baseline experiments are therefore:

– Initial-only: Train on DIH ; test against DTH

– Optimal : Train on DIH ∪ DLH ; test against DTH

– Naively-retrained : Train on DIH ∪ DLA; test against DTH

2.4 Experiments Involving User Input

For each type of user interface, we perform the following experimental steps:

– Step 1 : Train on DIH

– Step 2 : Produce automatic hypotheses DLA

– Step 3 : Update DLA based on user feedback, producing a dataset DLU

– Step 4 : Test the updated DLU against the gold-standard DLH

– Step 5 : Retrain on DIH ∪ DLU

– Step 6 : Test against DTH and the baselines

We can test the effectiveness of user feedback in two ways. Results can be
presented in terms of the accuracy of the updated hypotheses for L (i.e. directly
measuring agreement between DLH and DLU ). Results can also be presented in
terms of the overall effect on classifier performance as tested on T (i.e. measuring
agreement between DTH and DTA, and comparing with the above baselines).
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3 User Interfaces and Artificial Feedback

We characterize potential interfaces along three dimensions: temporal (whether
an interface provides information about when action items were discussed), tex-
tual (whether it provides information about the properties of the action items),
and initiative (whether interaction is initiated by computer, user, or both).

Accordingly, we can define a set of hypothetical user interfaces, summarized in
Table 1. The Proactive Button provides only user-initiated temporal information,
simply allowing the user to signal that an action item has just occurred at
any time during the meeting – this could be realized as a virtual button on
a tablet PC or PDA, or perhaps digital paper. The Reactive Button provides
computer-initiated temporal information: it tells the user during a meeting when
an action item is detected, requiring the user to confirm or reject (or ignore) the
hypothesis. Again, this could be realized on a PC, PDA, or phone. Our third
interface, Post-meeting Notes, assumes only textual information supplied by the
user after the meeting is finished, either via note-taking software or by scanning
hand-written notes. Our In-meeting Notes interface provides both textual and
temporal information, assuming that the user is willing to take descriptive notes
when action items are discussed (perhaps via collaborative note-taking software).

Table 1. The set of user interfaces investigated

Temporal Textual
Interface Information Information Initiative

Proactive Button Yes No User
Reactive Button Yes No Computer

Post-Meeting Notes No Yes User
In-Meeting Notes Yes Yes User

3.1 Simulating Feedback from “Idealized” Users

To simulate feedback as it would be produced by an “ideal” (perfectly informa-
tive and correct) user, we use information from our existing human annotations.

To simulate user-initiated feedback, we need to provide the textual descrip-
tions and/or discussion times of each action item. Times are taken as the end
time of the final utterance in an annotated action item subdialogue. Text infor-
mation is taken from the properties annotated for each individual action item
(the task description, the timeframe description, and the identity of the respon-
sible party). Note that annotators were allowed to specify these properties as
free text, paraphrasing or rewording the actual discussion as needed: there was
no requirement to copy the words or phrases actually used in the transcripts.
While they showed a tendency to re-use important words from the utterances
themselves, this seems entirely natural and we expect that users would behave
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similarly. Importantly, annotated information about which utterances belong to
a subdialogue, or which utterances play which dialogue act roles, is not used.

To simulate computer-initiated feedback, we must compare the automatic
hypotheses with the gold-standard annotations, and provide negative or posi-
tive feedback accordingly. This requires a criterion for acceptability, which must
vary depending on the interface’s information content. Where temporal infor-
mation only is concerned, we class a hypothesis as correct if its corresponding
subdialogue period overlaps by more than 50% with that of a gold-standard
subdialogue. Where textual information is concerned, we compare each property
description using a string similarity metric, and class a hypothesis as correct if
the similarity is above a given threshold (see below for more details).

3.2 Interpreting Feedback as Annotation

Given these varying degrees of feedback information, our task is now to infer a
complete set of structured action item annotations (both the action item subdia-
logue periods, and the individual utterances which perform the various dialogue
acts within those periods). The inference method depends, of course, on the
amount and type of information provided – a summary is shown in Table 2.

The simplest case is that of overall confirmation or rejection of a computer-
generated hypothesis (as provided by computer-initiated feedback, whether de-
termined on a temporal or textual basis). In this case, we already have a record
of which utterances were involved in generating the hypothesis, and their hy-
pothesized dialogue act types; if confirmed, we can use these types directly as
(positive) annotation labels; if rejected, we can mark all these utterances as
negative instances for all dialogue act types.

The most complex case is that of independent creation of a new action item
(as provided by user-initiated feedback). In this case, we have no information
as to which utterances are involved, but must find the most likely candidates
for each relevant dialogue act type; of course, we may have an indicative time,
or textual descriptions, or both, to help constrain this process. Given only the
time, we must use what prior information we have about the characteristics of
the various dialogue act types: given our approach, this means using the existing
subclassifiers – using each one to assign a confidence to each utterance within
a realistic time window, and labeling those above a given confidence threshold.
However, textual information (if available) can provide more independent evi-
dence, at least for semantically informative dialogue act types. For the purely
textual task description and timeframe acts, we can use an independent similar-
ity measure to score each utterance, and label accordingly;1 for owner acts, where
the owner’s identity usually arises through discourse reference (e.g. personal pro-
nouns) rather than lexical information, we can filter potential utterances based
on their referential compatibility. However, as the agreement act type does not
correspond to any textual information that a user might realistically provide, it
must always be assigned using the existing subclassifier.
1 Our current similarity measure uses a heuristic combination of lexical overlap and

semantic distance (using WordNet [14]); we plan to investigate alternatives in future.
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Table 2. Inference procedures for each feedback type. Here, “likely” refers to the use
of subclassifier confidences, “relevant” to the use of similarity measures.

Text Time
Feedback Info. Info. Procedure

confirm (Given) (Given) Label all utterances as hypothesized.
reject (Given) (Given) Label all utterances as negative.
edit Yes (Given) Label most relevant utterance(s) in time window.

create No Yes Label most likely utterances in time window.
create Yes Yes Label most relevant utterances in time window.

Other cases such as editing of an individual property of an action item fall in
between these two cases: we use a relevant similarity measure (if text is available)
or the relevant subclassifier (if not) to label the most likely corresponding utter-
ance(s) – but in these cases we have more constraining information (knowledge
of the part of the subdialogue/hypothesis not being edited).

Note that an alternative to purely computer- or user-initiated feedback exists:
we can attempt to interpret user-initiated feedback as implicitly giving feedback
on the computer’s hypotheses. This way, a user specification of an action item
could be interpreted as an implicit confirmation of a suitable overlapping hy-
pothesis (and a rejection of an unsuitable or non-overlapping one) if one exists,
and only as an independent creation otherwise. We investigate both approaches.

3.3 Research Questions

By analyzing these re-interpreted annotations as idealized feedback coming from
different types of interfaces, we hope to answer a few questions.

First, in comparing the two types of time data and text data, will either of
these types prove to be more informative than the other? Will either type prove
itself not valuable at all? A “yes” to either of these questions could save us time
that we might otherwise spend testing interfaces with no inherent promise.

Similarly, since relying on user initiative can burden the user in a way that a
system-initiative interface doesn’t (by requiring the user to keep another task “in
mind” while doing other things), is there any value to a user-initiative system
over and above a system-initiative one? And is there a notable benefit to com-
bining both initiatives, by treating user-initiated actions as implicit confirmation
for system-initiated ones?

Our final question is how the overall performances compare to the base-
line cases. How close is the overall performance enabled by feedback to the
ideal performance achieved when large amounts of gold-standard annotated data
are available (our Optimal ceiling)? Does the use of feedback really provide
better performance than naively using the classifier to re-annotate (the Naively-
retrained baseline)? If not, we must consider the possibility that such
semi-supervised feedback-based training offers little benefit over a totally un-
supervised approach, and save users (and ourselves) some wasted effort.
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4 Results

We evaluate the experimental results in two separate ways. The first evaluation
directly evaluates the quality of the new training data inferred from feedback on
the L dataset. Tables 3 & 4 report the accuracy of the updated annotations DLU

compared with the gold-standard human annotations DLH , both in terms of the
kappa metric (as widely used to assess inter-annotator agreement [15]) and as F-
scores for the task of retrieving the utterances which should be annotated. Kappa
figures are given for each of the four utterance classes, showing the accuracy in
identifying whether utterances belong to the four separate classes of description,
timeframe, owner, and agreement, together with the figure for all four classes
taken together (i.e. agreement on whether an utterance should be annotated as
action-item-related or not). Table 3 shows these results calculated over individual
utterances; Table 4 shows the same, but calculated over 30-second intervals –
note that training data which assigns, say, the agreement class to an incorrect
utterance, but one which is within a correct subdialogue, may still be useful for
training the overall classifier.

The second evaluation shows the effect on overall performance of re-training on
this new inferred data. Table 5 reports the classifier performance on the test set
T , i.e. the accuracy of the hypothesized DTA compared with the gold-standard
DTH . We show results as F-scores for two retrieval tasks: firstly, identifying the
individual component utterances of action items; and secondly, identifying the
presence of action items within 30-second intervals (an approximation of the task
of identifying action item subdialogues).

The training data quality results (Tables 3 & 4) suggest several possible con-
clusions. Firstly, we see that using either temporal or text information alone
allows improvement over raw classifier accuracy, suggesting that either can be
useful in training. Secondly, combining both types of information (in-meeting
notes) does best. Thirdly, textual information seems to be more useful than
temporal (post-meeting notes do better than either button). This is useful to

Table 3. Utterance-level accuracy for the training annotations inferred from user feed-
back (DLU ) in comparison to the gold-standard human annotations (DLH)

Interface Utterance Classes Average
(& implicit hyp use) agreement description timeframe owner Kappa F1

(Raw hypotheses) 0.06 0.13 0.03 0.12 0.13 0.15
Proactive Button 0.22 0.30 0.17 0.37 0.35 0.36

–”– (implicit) 0.21 0.35 0.16 0.35 0.39 0.41
Reactive Button 0.15 0.31 0.09 0.28 0.32 0.33

Post-meeting Notes 0.26 0.65 0.75 0.29 0.56 0.56
–”– (implicit) 0.10 0.32 0.13 0.15 0.25 0.27

In-meeting Notes 0.26 0.72 0.75 0.40 0.61 0.62
–”– (implicit) 0.21 0.61 0.32 0.26 0.52 0.53
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Table 4. 30-second interval accuracy for the training annotations inferred from user
feedback (DLU ) in comparison to the gold-standard human annotations (DLH)

Interface Utterance Classes Average
(& implicit hyp use) agreement description timeframe owner Kappa F1

(Raw hypotheses) 0.13 0.23 0.11 0.22 0.19 0.27
Proactive Button 0.46 0.71 0.30 0.67 0.65 0.68

–”– (implicit) 0.41 0.75 0.44 0.63 0.64 0.67
Reactive Button 0.34 0.51 0.35 0.46 0.42 0.45

Post-meeting Notes 0.39 0.80 0.89 0.43 0.75 0.77
–”– (implicit) 0.19 0.41 0.24 0.29 0.36 0.43

In-meeting Notes 0.43 0.91 0.89 0.53 0.82 0.84
–”– (implicit) 0.43 0.89 0.68 0.62 0.79 0.81

Table 5. The classification accuracy of the retrained classifiers’ hypotheses on the test
set (DTU ), and those of the baseline classifiers

Utterances 30-sec Windows
Interface Prec. Recall F1 Prec. Recall F1

Initial-only 0.08 0.13 0.09 0.21 0.27 0.22
Naively-retrained 0.09 0.20 0.12 0.23 0.45 0.30

Optimal 0.19 0.26 0.22 0.47 0.44 0.45

Proactive Button 0.18 0.25 0.21 0.47 0.48 0.46
Reactive Button 0.20 0.26 0.22 0.49 0.55 0.50

Post-meeting Notes 0.14 0.20 0.17 0.41 0.41 0.40
In-meeting Notes 0.16 0.27 0.20 0.42 0.52 0.46

know for interface design; it seems likely that temporal synchrony of interface
actions and actual discussion of action item may be less exact with real users,
so a design which does not have to rely on this synchrony may be advantageous
(see below for a discussion of future experiments to investigate this.)

We also note that user initiative does seem to provide extra information above
that provided by a purely system-initiative approach (proactive beats reactive).
Of course, this may be influenced by the current low overall performance of the
classifiers themselves, and may change as performance improves; however, it does
suggest that a new technology such as action item detection, with inherently high
error rates, is best applied without system initiative until accuracy improves.
Similarly, implicit use of computer hypotheses harms the performance of the
text-based notes; although it seems to marginally help the proactive button.

We note that the absolute level of agreement for utterance-level annotations
is poor, and well below that which might be expected from human annotators.
However, some utterance classes do well in some cases, with task description
and timeframe utterances giving good agreement with the notes-based interfaces
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(unsurprisingly, these are the utterance classes which convey most of the infor-
mation which a text note might contain). And all interfaces achieve respectable
levels when considered over 30-second intervals, allowing us to expect that these
inferred data could to some extent replace purely human annotation.

The overall performance results (Table 5) show that all kinds of feedback im-
prove the system. All interfaces outperformed the Naively-retrained and Initial-
only baselines; in fact, at the 30-second interval level, all perform approximately
as well as our Optimal ceiling. However, we hesitate to draw strong conclu-
sions from this, as the test set is currently small – we also note that differences
in training data accuracy do not seem to translate directly into the perfor-
mance differences one might expect, and this may also be due to small test set
size.

5 Conclusions and Further Work

These results now lead us directly to the important problem of balancing cog-
nitive load with usefulness of feedback. As intuition predicts, interfaces which
supply more information perform better, with synchronous note-taking the most
useful. But there is a cognitive price to pay with such interfaces. For now, our
results suggest that interfaces like the proactive or reactive buttons, which likely
demand less of users’ attention, can still significantly improve results, as can
post-meeting note-taking, which avoids distractions during the meeting.

Of course, these idealized interactions only give us a Platonic glimpse of what
can be expected from the behavior of actual people working in the shadows of
the real world. So our next step is to run an experiment with human subjects
using these types of interfaces during actual meetings, and compare actual use
data with the results herein in order to understand how well our observations of
these simulated interfaces will extend to actual interfaces, and to ascertain the
level of cognitive effort each interface demands. Then we can hope to determine
an optimal balance between the demands of a “meeting assistant” system and
the demands of the meeting participants who use it.

Future research will also involve efforts to improve overall classifier perfor-
mance, which is currently low. Although action item detection is a genuinely
hard problem, we believe that improvement can be gained both for utterance
and subdialogue classifiers by investigating new classification techniques
and feature sets (for example, the current classifiers use only basic lexical
features).

Our final set of future plans involve exploring new and better ways for inter-
preting user feedback, updating automatically-produced hypotheses, and mak-
ing decisions about retraining. Individual meetings display a high degree of
variability, and we believe that feedback on certain types of meetings (e.g.
planning meetings) will benefit the system greatly, while other types (e.g. pre-
sentations) may not. We will therefore investigate using global qualities of the
updated hypotheses to determine whether or not to retrain on certain meetings
at all.
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Abstract. Pattern Recognition systems are not error-free. Human in-
tervention is typically needed to verify and/or correct the result of such
systems. To formalize this fact, a new framework, which integrates the
human activity into the recognition process taking advantage of the user’s
feedback, is described. Several applications, involving Interactive Speech
Transcription and Multimodal Interactive Machine Translation, have re-
cently been considered under this framework. These applications are
reviewed in this paper, and some experiments, showing that the pro-
posed framework can save significant amounts of human effort, are also
presented.

1 Introduction

The idea of interaction between humans and machines is by no means new. In
fact, historically, machines have mostly been developed with the aim of assist-
ing human beings in their work. Since the introduction of computer machinery,
however, the idea of fully automatic devices that would completely substitute
the humans in certain types of tasks, has been gaining increasing popularity.

This is particularly the case in areas such as Pattern Recognition (PR), where
only a very small fraction of the huge potential of the interactive framework
has been exploited so far. Scientific and technical research in this area has fol-
lowed the “full automation” paradigm traditionally, even though, in practice,
full automation often proves elusive or unnatural and application developments
typically end up in “semiautomatic systems” or systems for “computer assisted”
operation. By neglecting the regular need for human feedback in the initial prob-
lem formulation, the resulting systems generally fail to take full advantage of the
opportunities underlying the interactive framework [11,6].

The aim of the present article is to introduce a formal PR framework that ex-
plicitly includes the human activity in the recognition process. This framework
entails several interesting features. First, it shows how using the human feed-
back information obtained in each interaction step directly allows to improve
subsequent system performance. Second, it clearly suggests that human feed-
back implicitly entails some form of multimodal interaction, thereby promoting
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Fig. 1. Diagram of multimodal interaction in IPR

improved system ergonomics. And last but not least, since the successive re-
sults produced by the system at each interaction step are fully human-validated,
these results can be used as new and completely reliable training material for
adaptative learning of the models involved.

Figure 1 shows a schematic view of these ideas. Here, x ∈ X is an input stimu-
lus, observation or signal and h ∈ H is a hypothesis or output, which the system
derives from x. By observing x and h the user provides some (perhaps null) feed-
back signal, f ∈ F , which may iteratively help the system to refine or to improve
its hypothesis until it is finally accepted. Note that, typically, F �= X ; hence the
inherent multi-modality of the interactive framework. M is a model used by
the system to derive its hypotheses. It was initially obtained through classical
“batch” or “off-line” training from some initial training sequence (xi, hi). How-
ever, using the input data x and feedback signals f produced in each interaction
step, the model can also be adapted to the specific task and/or to the user’s
interaction style. Note that (on-line, adaptive) learning issues are not developed
in this article, leaving them for consideration in future studies.

In the following sections we present a general formalization of these ideas
for Interactive Pattern Recognition (IPR). It is followed by a review of several
applications, involving interactive Computer Assisted Speech Transcription and
Multimodal Interactive Machine Translation, which we have recently considered
and which specifically fit under this framework. Results achieved in these ap-
plications are also summarized, empirically showing that significant amounts of
human effort can be saved in all the cases.
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2 A Formal Framework for Interactive Pattern
Recognition

Since adaptive learning is not considered in this paper, system operation is sup-
posed to be driven by a fixed statistical model M . Under this assumption, we
examine how human feedback can be directly used to improve the system per-
formance and discuss the multimodal issues entailed by the resulting interactive
framework.

Using the human feedback directly. In traditional PR [5] a best hypothesis
is one which maximizes the posterior probability Pr(h | x). Using a fixed model
M this is approximated as:

ĥ = argmax
h∈H

PM (h | x) (1)

Now, interaction allows adding more conditions, that is:

ĥ = argmax
h∈H

PM (h | x, f) (2)

where f ≡ f1f2 . . . stands for the feedback, interaction-derived informations;
e.g., in the form of partial hypotheses or constraints on H. The new system
hypothesis, ĥ, may prompt the user to provide further feedback informations,
thereby starting a new interaction step. The process continues this way until the
system output is acceptable by the user1.

Clearly, the more fi terms can be added in (2) the greater the opportunity
to obtain better ĥ. But solving the maximization (2) may be more difficult than
in the case of our familiar PM (h | x). Adequate solutions are discussed in the
following sections for some specific applications.

Multimodality. As previously mentioned, in general, the interaction feedback
informations f do not naturally belong to the original domain from which the
main data, x, come from. This entails some sort of multimodality, apart from
the possible multimodal nature of the input signals.

For the sake of simplicity, we assume that neither x nor f are multimodal
themselves. Therefore, Eq.(2) corresponds to a fairly conventional modality fu-
sion problem which can be straight-forwardly re-written as:

ĥ = argmax
h∈H

PM (x, f | h) · P (h) (3)

where P (h) is the prior probability of the hypothesis. In many applications it is
natural and/or convenient to assume conditional independence of x and f given

1 This is a first-order approach, where ĥ is derived using only the feedback obtained in
the previous iteration step. More complex, higher-order models are not considered
in this paper.
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h. Consider for instance that x is an image and f the acoustic signal of a speech
command. In this case, a näıve Bayes decomposition leads to:

ĥ = argmax
h∈H

PMX (x | h) · PMF (f | h) · P (h) (4)

which allows for a separate estimation of independent models, MX and MF

for the image and speech components respectively 2. As will be discussed in
Section 5, the maximization in Eq. (4) can often be approached by means of
adequate extensions of available techniques to solve the corresponding search
problems in the traditional non interactive/multimodal framework.

3 Computer Assisted Speech Transcription

In this section we discuss the application of the IPR framework to the transcrip-
tion of spoken documents. This application is called Computer Assisted Speech
Transcription (CAST) [10].

In conventional Automatic Speech Recognition (ASR) the input pattern v is
a speech utterance and system hypotheses are sequences of transcribed words, t,
from a certain language. This way, Eq. (1) is rewritten as:

t̂ = argmax
t

P (t | v) = argmax
t

P (v | t) · P (t) (5)

where P (v | t) is given by acoustic models (usually hidden Markov models [7])
and P (t) by a target language model (usually a n-gram [7]).

In the CAST framework, the user is directly involved in the transcription
process since he/she is responsible for validating and/or correcting the ASR
output during the process. According to the IPR paradigm, the system should
take into account the current state to improve the following predictions. The
process starts when the system makes an initial prediction consisting in a whole
transcription of (some adequate segment of) the input signal. Then, the user
reads this prediction until a transcription error is found. At this point, the user
corrects this error generating a new, extended prefix (the previous validated
prefix plus the amendments introduced by the user). This new prefix is used by
the ASR system to attempt a new prediction thereby starting a new cycle that
is repeated until a final and successful transcription is reached. An example of
this process is shown in Fig. 2.

Formally, the CAST framework can be seen as an instantiation of the problem
formulated in Eq. (2) where, in addition to the given utterance v (x in Eq.(2)),
a prefix tp of the transcription is available. This prefix, which corresponds to
the feedback f in Eq. (2), contains information from the last system’s prediction
plus user’s actions, in the form of amendment keystrokes. The ASR should try
to complete this prefix by searching for the most likely suffix t̂s (ĥ in Eq.(2)),
according to:

t̂s = argmax
ts

P (ts | v, tp) = argmax
ts

P (v | tp, ts) · P (ts | tp) (6)

2 To simplify notation, PMZ (z | . . .) will be denoted as P (z | . . .) from now on.
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(v)

ITER-0 (tp) ( )

ITER-1

(t̂s) (Nine extra soul are planned half beam discovered these years)

(a) (Nine)

(k) (extrasolar)

(tp) (Nine extrasolar)

ITER-2

(t̂s) (planets have been discovered these years)

(a) (planets have been discovered)

(k) (this)

(tp) (Nine extrasolar planets have been discovered this)

FINAL

(t̂s) (year)

(k) (#)

(tp ≡ t) (Nine extrasolar planets have been discovered this year)

Fig. 2. Example of CAST interaction. Initially the prefix tp is empty, and the system
proposes a complete transcription (t) of the audio input (v). In each iteration the user
reads this transcription, validating a prefix (a) of it. Then, he or she corrects some
words (k) of the transcription provided by the system, generating so a new prefix tp

(the previous one plus the words added by the user). At this point, the system will
suggest a suitable continuation to this prefix (tp) and this process will be repeated
until a complete and correct transcription (t) of the input signal is reached.

Eq. (6) is very similar to Eq. (5), t being the concatenation of tp and ts. The
main difference is that tp is given. Therefore, the search must be performed over
all possible suffixes ts of tp and the language model probability P (ts | tp) must
account for the words that can be uttered after the prefix tp.

In order to solve Eq. (6), the signal v can be considered split into two frag-
ments, vb

1 and vm
b+1, where m is the length of v. By further considering the

boundary point b as a hidden variable, we can write:

t̂s = argmax
ts

∑

0≤b≤m

P (v, b | ts, tp) · P (ts | tp) (7)

We can now make the näıve (but realistic) assumption that the probability of
vb
1 given tp does not depend on the suffix and the probability of vm

b+1 given ts
does not depend on the prefix and, approximating the sum over all the possible
segmentation by the dominating term, Eq.(7) can be rewritten as:

t̂s ≈ argmax
ts

max
0≤b≤m

P (vb
1 | tp) · P (vm

b+1 | ts) · P (ts | tp) (8)

This optimization problem entails finding an optimal boundary point, b̂, associ-
ated with the optimal suffix decoding, t̂s. That is, the signal v is actually split
into two segments, vp = vb̂

1 and vs = vm
b̂+1

, the first one corresponding to the
prefix and the second to the suffix. Therefore, the search can be performed just
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over segments of the signal corresponding to the possible suffixes and, on the
other hand, we can take advantage of the information coming from the prefix
to tune the language model constraints modelled by P (ts | tp). Details of this
language model adaptation using n-grams can be seen in [10].

3.1 Experimental Results

To assess the CAST approximation discussed above, different experiments were
carried out. These experiments were performed on two different corpora, the
EuTrans tourist corpus and the Albayzin geographic corpus. Description of
both corpora can be found in [10].

Two kinds of assessment metrics were adopted: the Word Error Rate (WER)
and the Word Stroke Ratio (WSR). WER is a well known measure which es-
timates the number of off-line word corrections needed to achieve a perfect
transcription, divided by the total number of words in the correct transcription.
WSR, on the other hand, estimates the number of on-line user interactions (in
terms of whole typed words) which are necessary to reach the same perfect tran-
scription, also relative to the total number of words in the correct transcription.

The comparison between WER and WSR estimates the amount of effort re-
quired by a CAST user with respect to the effort needed by using a classical
speech recognition system followed by manual off-line post-editing.

Table 1 summarizes the results, empirically showing a clear effectiveness of
the CAST approach in both corpora.

Table 1. CAST results (in %) obtained with two corpora

Eutrans Albayzin

WER 11.4 11.6
WSR 9.3 10.1

Relative Improvement ≈ 19 ≈ 14

4 Computer Assisted Translation (CAT)

The statistical (pattern recognition) framework for Machine Translation (MT)
can also be stated as a particular case of Eq. (1). Given a text sentence x from
a source language, search for a sentence t̂ (ĥ in Eq. 1) from a target language
for which the posterior probability is maximum, that is:

t̂ = argmax
t

P (t | x) = argmax
t

P (t) · P (x | t) . (9)

The models adopted for each factor of Eq. (9) play an important role. On the
one hand, P (t) is modeled by a target language model which gives high proba-
bility to well formed target sentences. On the other hand, models for P (x | t)
should give high probability for those sentences from the source language which
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are good translations for a given target sentence. These models generally con-
sist of stochastic dictionaries, along with adequate models to account for word
alignments [1,9].

An alternative is to transform Eq. (9) as:

t̂ = argmax
t

P (t, x) . (10)

In this case, the joint probability distribution can be adequately modeled by
means of stochastic finite-state transducers (SFST) [3], among other possible
models.

Following the IPR paradigm, user intervention can be included into this frame-
work. The process is quite similar to what was described for CAST in Section 3.
Here, the difference is that the input is a source text rather than an audio signal.

Given a source text x and a user validated prefix tp of the target sentence
(the feedback f in Eq. (2)), search for a suffix ts of the target sentence that
maximizes the posterior probability over all possible suffixes:

t̂s = argmax
ts

P (ts | x, tp) . (11)

Taking into account that P (tp | x) does not depend on ts, we can write:

t̂s = argmax
ts

P (tpts | x) , (12)

where tpts is the concatenation of the given prefix tp and a suffix ts. Eq. (12)
is similar to Eq. (9), but here the maximization is carried out over a (possibly
infinite) set of suffixes, rather than full sentences as in Eq. (9).

The system proposed in [12] addresses the search problem stated in Eq. (12) by
means of statistical phrase-based models. Alternatively, Eq. (12) can be rewritten
as:

t̂s = argmax
ts

P (tpts, x) . (13)

In this case, as in Eq. (10), this joint distribution can be adequately modeled
by means of SFSTs and, the search problem is addressed by adequate extensions
of the Viterbi algorithm. This approach is followed in the CAT systems presented
in [4].

4.1 Experiments

Different experiments have been carried out to assess the proposed CAT ap-
proach. Apart from other assessment metrics commonly used in machine trans-
lation [2], an important performance criterion in this case is the amount of effort
that the human translator would need, with respect to the effort needed to type
the whole translation without the CAT system. This is estimated by the so
called Key Stroke Ratio (KSR) which is related to WSR described in section 3
and measures the number of user interactions in terms of keystrokes needed to
achieve a perfect translation of the source sentence. KSR can be automatically
computed by using reference translations of the test source sentences [4].
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The experiments were carried out on two corpora: the Xerox printer manuals
and the Bulletin of the European Union. In both corpora, three language pairs
were considered in both translation directions: English/Spanish, English/French
and English/German [4].

According to the results reported in [3,4,12] the KSR ranged from 22% to
47%, depending on the language pair and corpus considered. In all the cases,
the estimated saved effort was significant. In addition to these experiments, a
CAT prototype was implemented and formal on-line tests with real (professional)
users were carried out. Results reported in [8] confirmed that our CAT system can
actually save significant amounts of human translator effort when high-quality
translations are needed.

5 Multimodality in Computer Assisted Translation
Speech-Enabled CAT

In CAT applications the user is repeatedly interacting with the system. Hence,
the quality and ergonomics of the interaction process is crucial for the success
of the system. Peripherals like keyboard and mouse can be used to validate and
correct the successive predictions of the CAT system. Nevertheless, providing
the system with a multimodal interface should result in an easier and more
comfortable human-machine interaction. Different ways of communication can
be explored; gaze and gesture tracking, touchscreens, etc.

In this section we focus on a speech interface for CAT. Speech has been se-
lected for several reasons. On the one hand, it is a very natural and seamless
way to convey information for humans. On the other, CAT is about natural lan-
guage processing, where the use of natural spoken language seems to be most
appropriate [11]. More specifically, the user has to read the system’s predictions
to search for possible mistakes and correct them if necessary. Allowing the user
to read aloud and letting the application capture this information and use it as
feedback to perform a new CAT interaction constitutes, a priori, a good premise
to implement a CAT multimodal system in this way. Additionally, high speech
recognition accuracy can be achieved by adopting a IPR approach to implement
this multimodal interface. These ideas, which were first introduced in [13], are
reviewed below.

Let x be the source text and tp a validated prefix of the target sentence.
The user is then allowed to utter some words v, generally related to the suffix
suggested by the system in the previous iteration. This utterance is aimed at
accepting or correcting parts of this suffix. It can be used to add more text as
well. Moreover, the user may enter some keystrokes k in order to correct (other)
parts of this suffix and/or to add more text. Using this information, the system
has to suggest a new suffix ts as a continuation of the previous prefix tp, the
voice v and the typed text k. That is, the problem is to find ts given x and a
feedback information composed of tp, v and k, considering all possible decodings
of v (i.e., letting the decoding of v be a hidden variable).
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According to this very general discussion, it might be assumed that the user
can type with independence of the result of the speech decoding process. How-
ever, it can be argued that this generality is not realistically useful in practical
situations. Alternatively, it is much more natural that the user waits for a sys-
tem outcome (d̂) from the spoken utterance v, prior to start typing amendments
(k) to the (remaining part of the previous) system hypothesis. Furthermore, this
allows the user to fix possible speech recognition errors in d̂.

In this more pragmatic and simpler scenario, the interaction process can be
formulated in two steps. The first step is to rely on the source text x and the
previous target prefix tp, in order to search for a target suffix t̂s:

t̂s = argmax
ts

Pr(ts | x, tp) (14)

Once t̂s is available, the user can produce some speech, v, and the system has
to decode v into a target sequence of words, d̂:

d̂ = argmax
d

P (d | x, tp, t̂s, v) (15)

Finally, the user can enter adequate amendment keystrokes k, if necessary, and
produce a new consolidated prefix, tp, based on the previous tp, d̂, k and parts
of t̂s. The process will continue in this way until ts is completely accepted by the
user as a full target text which is an appropriate translation of x. An example
of this combined speech and text interaction with a CAT system is shown in
Fig. 3.

Since we have already dealt with Eq. (14) in section 4 (Eq. 11-13), we focus
now on Eq. (15). As compared with Eq. (2), here the triplet (x, tp, t̂s) and v would
correspond to two modalities: x (text) and f (voice). Therefore, assumptions and
developments similar to those of Eq. (3-4) lead to:

d̂ = argmax
d

P (x, tp, t̂s | d) · P (v | d) · P (d) (16)

which can be strightforwardly re-written as:

d̂ = argmax
d

P (d | x, tp, t̂s) · P (v | d) (17)

As in section 3, P (v | d) is modelled by the acoustic models of the words in d.
Here, P (d | x, tp, t̂s) can be provided by a target language model constrained by
the source sentence x, by the previous prefix tp and by the suffix t̂s produced at
the beginning of the current iteration.

Eq. (17) leads to different scenarios depending on the assumptions and con-
straints adopted for P (d | x, tp, t̂s). Three of them are discussed hereafter.

The first one consists in pure speech recognition of sentence-fragments. This
scenario, called DEC, is considered here just as a baseline, where all the available
conditions are ignored; i.e., P (d | x, tp, t̂s) ≡ P (d).

A second possibility would be to use only the given prefix; that is,
P (d | x, tp, t̂s) ≡ P (d | tp). This is similar to the CAST framework discussed in
section 3 and is not considered here.
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ITER-0 (tp) ( )

ITER-1

(t̂s) (Haga clic para cerrar el diálogo de impresión)

(v)

(d̂) (Haga clic a)

(k) (en ACEPTAR)

(tp) (Haga clic en ACEPTAR)

ITER-2

(t̂s) (para cerrar el diálogo de impresión)

(v)

(d̂) (cerrar el cuadro)

(k) ( )

(tp) (Haga clic en ACEPTAR para cerrar el cuadro)

FINAL

(t̂s) (de diálogo de impresión)

(k) (#)

(tp ≡ t) (Haga clic en ACEPTAR para cerrar el cuadro de diálogo de impresión)

Fig. 3. Example of keyboard and speech interaction with a CAT system, to translate
the English sentence “Click OK to close the print dialog”. Each iteration starts with a
target language prefix tp that has been fixed in the previous iteration. First, the system
suggests a suffix t̂s and then, the user speaks (v) and/or types some keystrokes (k),
possibly aimed to amend t̂s (and maybe d̂). A new prefix, tp, is built from the previous
prefix, along with (parts of) the system suggestion, t̂s, the decoded speech, d̂, and
the typed text in k. The process ends when the user types the special character “#”.
System suggestions are printed in cursive, text decoded from user speech in boldface
and typed text in boldface typewriter font. In the final translation, t, text obtained
from speech decoding is marked in boldface, while typed text is underlined.

If the information of the source sentence is additionally used, a new scenario,
CAT-PREF, arises. In this case the speech recognition is constrained to find
suitable continuations that are also partial translations for the source sentence;
that is, P (d | x, tp, t̂s) ≡ P (d | x, tp).

Finally, a most constrained scenario is CAT-SEL, where the human translator
is only expected to utter exact prefixes of the suggestion made by the CAT
system in the previous iteration; i.e. P (d | x, tp, t̂s) ≡ P (d | t̂s). This scenario
aims at enabling highly accurate speech recognition as a way to validate correct
prefixes of the current predictions of the translation engine.

Note that the different constraints underlying DEC, CAT-PREF and CAT-
SEL, only affect the language model component of the speech decoding prob-
lem described by Eq. (17). Correspondingly, techniques similar to those used
in CAST (section 3) also apply in this case. Details of these techniques can be
found in [13].

5.1 Results

In the previous sections, experiments aimed at estimating the ability of the IPR
applications to help the user achieve perfect results with the minimum effort.
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In contrast, here our aim is to estimate the effectiveness of the multimodal
(speech) feedback mechanism. To this end we are interested in measuring the
degree of accuracy achieved when decoding the feedback signal with the help of
other interaction-related informations which are assumed available in the differ-
ent scenarios considered.

The test data for these experiments is composed of utterances of fragments of
target-language (Spanish) sentences extracted from the test part of the Xerox
corpus mentioned in Section 4. See [13] for details.

Speech decoding accuracy was assessed in terms of two well known measures,
Word Error Rate (WER) and Sentence Error Rate. SER is the number of “sen-
tences” (actually sentence fragments) correctly recognized divided by the overall
number of sentences. Particularly in CAT-SEL, SER estimates how often the
user will have to resort to non-speech (keyboard or mouse) interaction to amend
speech-derived positioning errors.

As expected, the results of Table 2 show that increasing speech recognition
performance is achieved as the language models become more constrained. By
adding constraints derived from the source text and the target sentence pre-
fix to DEC, a significant improvement is achieved in CAT-PREF: 8.0 points of
WER and 19.8 points of SER. It is worth noting that the results that can be
achieved in this scenario heavily depend on the quality of the underlying trans-
lation models employed and also on the difficulty of the translation task. Finally,
the restrictions added in the most constrained scenario, CAT-SEL, are directly
derived from the suggestions of the CAT system. In this case, the improvement
with respect to the previous scenario (CAT-PREF) is even more important: 9.0
points of WER and 26.4 points of SER. The decoding computational demands
of the different systems are also worth mentioning. A substantial reduction of
memory and computing time is observed from DEC to CAT-PREF. Finally
CAT-SEL only requires very light computing, which allows implementing this
kind of speech-enabled CAT systems on low-end desktop or laptop computers.

Table 2. Speech decoding results (in %) for different scenarios

WER SER

DEC (baseline) 18.6 50.2
CAT-PREF 10.6 30.0
CAT-SEL 1.6 3.6

6 Conclusions

A new general framework to integrate human activity into pattern recognition
systems, IPR, has been presented. In addition, two applications, CAST and
CAT, have been reviewed and the inclusion of a multimodal interface in CAT
has been discussed. This formulation and examples clearly suggest that IPR can
be advantageously extended to new application fields. Furthermore, new ways
to take advantage of the informations derived from the user interactions could
be explored in the future.
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Abstract. Query-by-Humming (QBH) systems transcribe a sung or
hummed query and search for related musical themes in a database,
returning the most similar themes as a play list. A major obstacle to
effective QBH is variation between user queries and the melodic targets
used as database search keys. Since it is not possible to predict all indi-
vidual singer profiles before system deployment, a robust QBH system
should be able to adapt to different singers after deployment. Currently
deployed systems do not have this capability. We describe a new QBH
system that learns from user provided feedback on the search results,
letting the system improve while deployed, after only a few queries. This
is made possible by a trainable note segmentation system, an easily pa-
rameterized singer error model and a straight-forward genetic algorithm.
Results show significant improvement in performance given only ten ex-
ample queries from a particular user.

1 Introduction

Most currently deployed music search engines, such as Amazon.com and local
libraries, make use of metadata about the song title and performer name in
their indexing mechanism. Often, a person is able to sing a portion of the piece,
but cannot specify the title, composer or performer. Query by humming (QBH)
systems [1,2,3,4,5] solve this mismatch between database keys and user knowl-
edge. This is done by transcribing a sung query and searching for related musical
themes in a database, returning the most similar themes as a play list.

One of the main difficulties in building an effective QBH system is dealing
with the variation between user queries and the melodic targets used as database
search keys. Singers are error prone: they may go out of tune, sing at a differ-
ent tempo than expected, or in a different key, and notes may be removed or
added [1,6]. Further, singers differ in their error profiles. One singer may have
poor pitch, while another may have poor rhythm. Similarly, different environ-
ments may introduce variation through different levels of background noise or
availability of different microphones.

Since it is not possible to predict all individual singer profiles or use cases
before deployment of a system, a robust QBH system should be able to adapt to
different singers and circumstances after deployment. Currently deployed QBH
systems do not have this capability.

A. Popescu-Belis, S. Renals, and H. Bourlard (Eds.): MLMI 2007, LNCS 4892, pp. 72–83, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. System overview

While there has been significant prior work that addresses (or is applicable to)
singer error modelling [6,7,8,5] for QBH, researchers have not focused on fully
automated, ongoing QBH optimization after deployment. Thus, these approaches
are unsuited for this task, requiring either hundreds of example queries [6,7], or
training examples where the internal structure of each query is aligned to the
structure of the correct target [8].

We are developing a QBH system (shown in Figure 1) that personalizes a
singer model based on user feedback, learning the model on-line, after deploy-
ment without intervention from the system developers and after only a few ex-
ample queries. The user sings a query (step 1 in the figure). The system returns
a list of songs from the database, ranked by similarity (step 2). The user listens
to the songs returned and selects the one he or she meant to sing (step 3). The
more a person uses and corrects the system, the better the system performs.
This is done by building a database of a user’s paired queries and correct targets
(step 4). These pairings are used to train optimal note segmentation and note
interval similarity parameters for each specific user (step 5).

In this paper, we focus on how we automatically optimize backend QBH sys-
tem performance, given a small set of example queries. We refer the reader to [9]
for a description of the user interface and user interaction. Section 2 describes
our query representation. Section 3 describes our optimizable note segmentation
algorithm. Section 4 describes our melodic comparison algorithm. Section 5 de-
scribes our optimizable note interval similarity function. Section 6 describes our
genetic algorithm learning approach. Section 7 outlines an empirical study of
our system. Section 8 contains conclusions and future directions.

2 Query Representation

In a typical QBH system, a query is first transcribed into a time-frequency
representation where the fundamental frequency and amplitude of the audio is
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Fig. 2. Several unquantized pitch intervals built from a melodic contour

estimated at very short fixed intervals (on the order of 10 milliseconds). We
call this sequence of fixed-frame estimates of fundamental frequency a melodic
contour representation. Figure 2 shows the melodic contour of a sung query as
a dotted line.

Finding queries represented by melodic contour imposes computational over-
head on the search engine [10]. The melodic contour representation uses absolute
frequency and tempo, making it sensitive to queries that vary in tempo and key
from the target. To overcome these problems one can transform the contour
through a number of keys and tempi [1] but this incurs significant overhead.

To improve system speed, we encode a query as a series of note intervals,
created as follows:

1. Divide the melodic contour into segments corresponding to notes.
2. Find the median pitch and the length in frames of each note segment.
3. Encode segments as a sequence of note intervals.

Each note interval is represented by a pair of values: the pitch interval (PI)
between adjacent note segments (encoded as un-quantized musical half-steps)
and the log of the ratio between the length of a note segment and the length of
the following segment (LIR) [10]. Since each LIR is a ratio, values do not have
units.

This representation is both transposition and tempo invariant. It is also com-
pact, only encoding salient points of change (note transitions), rather than every
10 millisecond frame. Figure 2 shows several note intervals.

We note that the use of unquantized PI and LIR values makes the repre-
sentation insensitive to issues caused by a singer inadvertently singing in an
unexpected tuning (A4 �= 440), or slowly changing tuning and tempo over the
course of a query. This lets us avoid having to model these common singer errors.

The note-interval representation speeds search by a factor of roughly 100,
when compared with a melodic contour representation on real-world queries [1].
This speedup comes at the price of introducing potential errors when dividing
the query into note segments. We address note segmentation in Section 3.
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3 Note Segmentation

In the initial transcription step, our system estimates the pitch, root-mean-
squared amplitude and harmonicity (the relative strength of harmonic compo-
nents compared to non-harmonic components) of the audio. This is done every
10 milliseconds, resulting in a sequence of fixed-length frames, each of which is
a vector of these three features.

We assume significant changes in these three features occur at note bound-
aries. Thus, we wish to find a good way to determine what constitutes significant
change. Our initial approach was to use a Euclidean distance metric on the se-
quence of frames. In this approach, a new note was assumed to begin whenever
the distance between adjacent frames exceeds a fixed threshold.

Unfortunately, this introduces error when a single fixed threshold is not ap-
propriate. For example, a singer may use vibrato at times and not at other times.
Thus, the local pitch variation that might constitute a meaningful note bound-
ary in one query may be insufficient to qualify as a note boundary in another
query by the same singer. We wish to take local variance into account when
determining whether or not a note boundary has occurred.

Note segmentation is related to the problem of visual edge detection [11,12].
Accounting for local variation has been successfully used in image processing
to perform edge detection in cases where portions of the image may be blurry
and other portions are sharp [13,11]. The Mahalanobis distance [14] differs from
the Euclidean distance in that it normalizes distances over a covariance matrix
M. Using the Mahalanobis lets one measure distance between frames relative to
local variation. In a region of large variance, a sudden change will mean less than
in a relatively stable region.

We find the distance between adjacent frames in the sequence using a Maha-
lanobis distance measure, shown in Equation 1. Recall that each frame is a three
element vector containing values for pitch (p), amplitude (a) and harmonicity
(h). Given a frame fi, fi = 〈pi, ai, hi〉, we assume a new note has begun wherever
the distance between two adjacent frames fi and fi+1, exceeds a threshold, T .
This is shown in Equation 1.

√
(fi − fi+1)M−1 (fi − fi+1)

′ (1)

Our covariance matrix M depends on local variation in the three features
of a frame. The matrix has three rows and three columns, with each row, ρ,
corresponding to one feature and each column, η, corresponding to one feature
(so ρ, η ∈ {pi, ai, hi} for fi). We calculate each element of M for a frame fi

using Equation 2:

Mρη =
1
2τ

i+τ∑

k=i−τ

(
ρk − ρ̄

wρ

) (
ηk − η̄

wη

)
(2)

In Equation 2, the w terms are weighting parameters that adjust the im-
portance of the features of the frame (pitch, harmonicity and amplitude). The
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parameter τ is the size of a window (measured in frames) surrounding the
current frame. The window size determines the number of frames considered
in finding local variation. The averages for ρ and η (ρ̄ and η̄) are calculated over
this window.

Thus, Equation 2 finds the covariance between a pair of features: for example
with ρ = a, and η = h, Equation 2 would find the covariance between the
amplitude and harmonicity for frames i − τ to i + τ .

Our note segmenter has four tuneable parameters: the segmentation threshold
(T ), and the weights (w) for each of the three features (pitch, harmonicity and
amplitude). We address tuning of these four parameters in Section 6. We leave
the tuning of parameter τ for future work, setting it to a value of 25 frames (250
milliseconds) to either side of the current frame i.

Once we have estimated note segment boundaries, we build note intervals
from these note segments.

4 Measuring Melodic Similarity

Once a query is encoded as a sequence of note intervals, we compare it to the
melodies in our database. Each database melody is scored for similarity to the
query using a classic dynamic-programming approach to performing string align-
ment [7]. The note interval matcher computes the similarity Q(A, B) between
two melodic sequences A = a1, a2, · · ·am and B = b1, b2, · · · bn. by filling the ma-
trix Q = (q1···m,1···n). Each entry qij denotes the maximum melodic similarity
between the two prefixes a1 · · · ai and bh · · · bj where 1 ≤ h ≤ j.

We use a standard calculation method for the algorithm, shown in Equation 3

qi,j = max

⎧
⎪⎪⎨

⎪⎪⎩

0
qi−1,j−1 + s(ai, bi)
qi−1,j − ca

qi,j−1 − cb

(3)

Here, s(ai, bj) is the similarity reward for aligning note interval ai to note interval
bj. We define s(ai, bj) in Section 5. The costs for skipping a note interval from
melody A or from melody B are given by ca and cb, respectively. Equation 3 is
a local alignment method, so any portion of the query is allowed to match any
portion of the target. The overall similarity is taken to be the maximum value
in the matrix Q.

5 Modeling Singer Error

We now define the similarity function s for note intervals. Ideally we would like
interval ai to be similar to interval bj if ai likely to be sung when a singer
intended to sing bj . That is, likely errors should be considered similar to the
correct interval, and unlikely errors should be less similar. Such a function lets a
string-alignment algorithm correctly match error-prone singing examples to the
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correct targets, as long as the singer is relatively consistent with the kinds of
errors produced.

In our previous work [7], the similarity function was represented with a table
of 625 (25 by 25) values for 25 possible pitch intervals (from -12 to 12 half steps).
The similarity between a perfect fifth (7 half steps) and a tritone (6 half steps) was
determined by calculating the statistical likelihood of a person singing a perfect
fifth when instructed to sing a tritone. The more likely this was, the higher the
similarity. This required hours of directed training to learn all pairings in our table.
This is something users outside the laboratory setting are unwilling to do.

For this work, we have developed a similarity function that captures singer
variation by tuning only a few parameters, so that suitable values can be learned
quickly. The normal function, N(a, μ, σ) returns the value for a given by a Gaus-
sian function, centered on μ, with a standard deviation σ. Equation 4 shows a
simple note-interval similarity function, based on the normal function.

s(x, y) = wpN(yp, xp, σp) + wrN(yr, xr, σr) (4)

Let x and y be two note intervals. Here, xp and yp are the pitch intervals of x
and y respectively, and xr and yr are the LIRs of x and y. The values wp and wr

are the weights of pitch and rhythm. The sum of wp and wr is 1. Equation 4 is
maximal when x and y are identical. As the difference between x and y grows,
Equation 4 returns a value approaching 0.

Equation 4 assumes increasing distance between pitch intervals is equivalent to
decreasing similarity between intervals. There is at least one way in which this
is untrue for pitch: octaves. Shepard [15] proposes a pitch similarity measure
that accounts for two dimensions: pitch chroma and pitch height. In this model,
octaves are fairly close to each other. Criani [16] proposes a psychological model
of pitch similarity based on the Pearson correlations of temporal codes which
represent pitched stimuli. These correlations show strong peaks not only near
like pitches, but also near pitches an octave apart. In previous work [10] we also
found high likelihood of octave substitutions in sung queries. This suggests that,
at a minimum, we should account for octave similarities in our measure of pitch
similarity. We thus modify Equation 4 to give Equation 5.

s(x, y) = wrN(yr, xr, σr) + wp

n∑

i=−n

λ|i|N(yp, xp + 12i, σp) (5)

Here, the pitch similarity is modeled using 2n+1 Gaussians, each one centered at
one or more octaves above or below the pitch of x. The height of each Gaussian
is determined by an octave decay parameter λ, in the range from than 1 to 0.
This reward function provides us with five parameters to tune: the pitch and
rhythm weight (wp and wr), the sensitivity to distances for pitch and rhythm
(σp and σr), and the octave decay (λ). Figure 3 shows the positive portion of
the pitch dimension of this function, given two example parameter settings, with
two octaves shown.
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Fig. 3. The pitch dimension of the similarity function in Equation 5

6 System Training

We train the system by tuning the parameters of our note segmenter (Equa-
tions 1 and 2) and note similarity reward function (Equation 5). We measure
improvement using the mean reciprocal rank (MRR) of a set of n queries. This
is shown in Equation 6. Here, we define the rank of the ith query, ri as the rank
returned by the search engine for the correct song in the database.

MRR =

n∑

i=1

1
ri

n
(6)

MRR emphasizes the importance of placing correct target songs near the top
of the list while still rewarding improved rankings lower down on the returned
list of songs [1]. Values for MRR range from 1 to 0, with higher numbers indicat-
ing better performance. Thus, MRR = 0.25 roughly corresponds to the correct
answer being in the top four songs returned by the search engine, MRR = 0.05
indicates the right answer is in the top twenty, and so on.

We use a simple genetic algorithm [17,18] to tune system parameters. Each in-
dividual in the population is one set of parameter values for Equations 1, 2 and 5.
The fitness function is the MRR of the parameter settings over a set of queries.

The genetic algorithm represents each parameter as a binary fraction of 7 bits,
scaled to a range of 0 to 1. We allow crossover to occur between (not within)
parameters.

During each generation, the fitness of an individual is found based on the
Mean Reciprocal Rank (MRR) of the correct targets for a set of queries. Param-
eter settings (individuals) with high MRR values are given higher probability of
reproduction (fitness proportional reproduction). We speed training by finding
MRR over random subset of the database.
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Given ten queries from each singer labeled with the correct target name and a
set of 250 target melodies from our database, the system personalizes two singers
per hour on our current hardware. These results are obtained with an iMac 2.16
GHz Intel Core Duo 2, with 2 GB of RAM. At this speed, our system can update
models overnight for up to 16 singers who have provided new queries during the
previous day.

7 Empirical Evaluation

Our empirical evaluation sought to compare user-specific training to training on
a general set of queries. We also sought to verify the utility of two new design
choices: the use of a Mahalanobis distance to account for local variation during
note segmentation, and the use of unquantized, as opposed to quantized note-
intervals.

Our query set was drawn from the QBSH corpus [19] used during the 2006
MIREX comparison of query-by-humming systems [20]. We used 10 singers, each
singing the same 15 songs from this dataset. Our target database was composed
of the 15 targets corresponding to these queries plus 1471 distracter melodies
drawn from a selection of Beatles songs, folk songs and classical music, resulting
in a database of 1486 melodies. Chance performance, on a database of this size
would result in an MRR ≈ 0.005, given a uniform distribution.

For the genetic algorithm, we chose a population size of 60. Initial tests showed
learning on this task typically ceases by the 30th generation, thus results shown
here report values from training runs of 40 generations. We used a mutation
probability of 0.02 per parameter.

We ran two experiments: the first examines the overall performance of user
specific training and the improvements the new system features introduced. The
second compares our system with using user-specific to a version without user-
specific training.

7.1 Experiment 1

For Experiment 1 we considered three different conditions. In the first condi-
tion we accounted for local variation during note segmentation using the Maha-
lanobis distance and used an unquantized note interval representation (Local).
In the second condition, we used Euclidean distance for note segmentation and
an unquantized note interval representation (Unquantized). In the third condi-
tion (Quantized) we used the Euclidean distance for note segmentation and a
quantized note interval representation. The quantized condition is equivalent to
a previous system we developed [7].

A single trial consists of selecting a condition (Local, Unquantized or Quan-
tized) and performing a training run for one singer, selecting ten of the singers
fifteen queries to train on and testing on the remaining five. To speed learn-
ing, training was done using a random sample of 250 target songs from the
database. The same sample of 250 songs was used for training in each of the
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Table 1. Mean (Standard Deviation) MRR over 30 trials in Experiment 1

Local Unquantized Quantized Chance

0.228(0.14) 0.176(0.14) 0.089(0.09) 0.005

three conditions, so that results could be compared fairly. For each trial, the set
of parameters with the best training performance was evaluated by finding the
MRR of the five testing queries, searching over all 1486 melodies in the database.

We performed three-fold cross validation. Thus, there were three trials per
singer for a total of 30 trials per condition. The mean MRR for each of the three
conditions is shown in Table 1.

A paired-sample t-test was performed between each pair of conditions and all
difference in means were found to be statistically significant (p < 0.031 in all
cases). A t-test showed all three conditions also performed significantly better
than chance (p < 0.001 in all cases). This indicates user-specific training does
have a positive effect on search results. Further, the use of Mahalanobis distance
for note segmentation and unquantized note interval representation significantly
improves performance.

One cause for concern is the variance in the results. In a few trials the learned
performance was below chance (< 0.005). In these cases it would make sense to
back off to a more generalized set of parameters, learned from a larger population
of singers. We explore this idea in Experiment 2.

7.2 Experiment 2

In practice, we would like to utilize user-specific training only when it improves
performance relative to an un-personalized system. One simple option is to only
use user-specific parameters if the user-specific performance (MRRu) is superior
to the performance using parameters learned on a general set of queries by
multiple users (MRRg).

To test this idea, we first trained the system on all queries from nine of the
ten singers used in Experiment 1. For these trials we used the Mahalanobis
distance for note segmentation and unquantized note intervals. We then tested
on all the queries from the missing singer. Cross validation across singers was
performed, thus the experiment was repeated ten times, testing with the queries
from a different singer each time. This gave us parameters for each singer that
were learned on the queries by the other nine singers. These are the General
parameter settings for a singer. The mean MRR testing performance of the
General parameters was 0.235 (Std. Dev. = 0.063).

We then repeated the user-specific training in Experiment 1 with the Local
condition. For each trial we determined whether the singer-specific parameters
found in a trial had an MRR on the training set (ten songs by one singer) that
exceeded by the MRR that would result from using general parameters learned
from the other nine singers. If, on the training set, MRRu > MRRg + ε we
used the user-specific parameters. Else, we used the general parameters. For this
experiment, ε is an error margin set to 0.04.
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Fig. 4. Testing Performance on Experiment 2

Once the parameters (general or user-specific) were selected, we tested them
on the testing set for that trial (the remaining five songs by that singer). We
called this a combined trial. The combined trials had an average MRR of 0.289
(Std. Dev. = 0.086). A t-test indicated the improvement of the combined results
over the general parameter settings is statistically significant (p = 0.024).

On 50% of the combined trials the user specific parameters were used and
improved performance compared to general training. On 13% of the trials, user-
specific parameters were selected, but made performance worse compared to
general training. On the remaining 36% of trials, the general data set parameters
were used. Figure 4 comaprers the results for conditions.

8 Conclusions

We have described a QBH system that can learn both general and singer-specific
error models and note segmentation parameters from labeled user queries. This
system can automatically customize parameters to individual users after deploy-
ment. This is done by taking pairings of queries to the correct targets (provided
by the user) and using these queries’ MRR as a fitness function to a genetic algo-
rithm that optimizes the note segmentation and note similarity parameters of our
system for that specific user. Our results show that combining user-specific train-
ing with more general training significantly improves mean search performance,
resulting in a mean MRR of 0.289 on a database of 1486 melodies. This roughly
corresponds to consistently placing the correct target in the top four results. Our
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results also show both unquantized note intervals and modeling local singer vari-
ation for note segmentation significantly improve performance.

In future work we plan to explore how performance varies with respect to the
number of training examples provided and improve the information that can be
used for training while maintaining user-specificity. We will also explore more
sophisticated criteria to determine when user-specific training should be used.
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Abstract. This article presents an ego-centric approach for indexing and brows-
ing meetings. The method considers two concepts: meetings’ data alignment 
with personal information to enable ego-centric browsing and live intentional 
annotation of meetings through tangible actions to enable ego-centric indexing. 
The article first motivates and introduces these concepts and further presents 
brief states-of-the-art of the domain of tangible user interaction, of document-
centric multimedia browsing, a traditional tangible object to transport informa-
tion, and of personal information management. The article then presents our  
approach in the context of meeting and details our methods to bridge the gap 
between meeting data and personal information. Finally the article reports the 
progress of the integration of this approach within Fribourg’s meeting room. 

1   Introduction 

With the constant growth of information a person owns and handles, it is particularly 
important to find ways to support information organization as well as personalized 
access to information. Information is dematerializing in our daily and professional life 
and thus, people are often experiencing the “lost-in-infospace” effect, i.e. overloaded 
with information and tasks to do. Our documents are multiplying in very large file hi-
erarchies, meetings attendance is increasing, emails are no longer organized due to 
lack of time, our pictures are no longer stored in photo-albums, our CDs are taking the 
form of mp3 files, etc. What we often miss in our daily-life and professional life are 
personal access to information, either tangible or digital, like used to be books in our 
shelves or the librarian who knew our interests. 

Google and Microsoft recently tried to solve the “lost-in-infospace” issue by pro-
viding, respectively, a desktop search engine and a powerful email search engine, in 
order to minimize the effort made by people to organize their documents and access 
them later by browsing. However, in order to find a file, one has to remember a set of 
keywords or at least remember its “virtual” existence. If one does not remember to 
have a certain document, browsing could still be helpful. Browsing can reveal related 
keywords and documents that help you remember, since the process of browsing 
works by association, like our human memory does [15][20][28]. For this reason, in- 
formation is generally easier to retrieve, and to “remember” if it is associated to per-
sonal information, either in a digital or physical form. 
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Meetings are central in our professional lives, not only formal meetings but also 
meetings at the coffee machines. Numerous recent works have tried to support the 
meeting process with recorders, analyzers and browsers, however most of those pro-
jects try to automate and generalize the whole process for every user, with the central 
long term goal to automate meeting minutes authoring [5, 6, 9, 16, 22, 26]. Moreover, 
all these projects try to hide technological support during the meeting, instead of ex-
ploring new ways to improve human-human communication with technology or new 
human-machine interaction to augment meeting rooms or enable intentional live an-
notations. Our claim is that replaying and browsing a meeting is personal in that it de-
pends of each individual person’s interests and that it is hard to find an agreement on 
what is interesting for everybody during a meeting. This claim is sustained by a recent 
survey we performed on 118 users [3]. This survey clearly shows that people have 
different needs from the meeting recordings and often personal needs, for instance 
what are the tasks they need to do or what do they need to prepare for the following 
meeting. Another interesting finding is that people use often their personal emails in 
order to access meeting information (reminders, outcomes, retrieve files). 

For the above reasons, we propose in this article an ego-centric approach, comple-
mentary to other projects, which consider (a) meeting participants as potential live 
annotators and (b) persons who consult meetings afterwards as individuals, and thus 
with their own interests, derived from their personal information. The proof of con-
cept of this tangible and personal access to information is currently assessed through 
two major applications: 

- The control of our daily life information through the design, implementation and 
evaluation of tangible interfaces, called MeModules [1], allowing access, control, 
personalization and materialization of personal multimedia in-formation; 

- The control of our professional information, meetings, emails and documents. 
This application, in the context of the NCCR on Interactive Multimodal Informa-
tion Management (IM2), aims at recording meeting with audio/video devices, and 
further at analyzing the captured data in order to create indexes to retrieve interest-
ing parts of meeting recordings. 

Although these applications share common type of multimedia information, either 
personal or professional, the way information is accessed can not be done in a unique 
manner because users do not share the same roles and context of interaction in the two 
applications. Our assumption is that an organization of meetings centered on users 
could bridge the gap between these two applications and thus re-enforce user experi-
ence in meeting browsing. For this reason, this article discusses mainly the second 
application. 

A brief state-of-the-art of tangible user interfaces is depicted in the next section. 
Further, the section presents a state-of-the-art on past and current document-centric 
browsers. The third section presents our ego-centric approach for indexing and brows-
ing meetings, with tangible live annotations first, and secondly through the alignment 
with personal information structure. Finally, the last section presents our meeting 
room and the advancement of the integration of this ego-centric vision. The conclu-
sion finally wrap-up the article and presents the future works. 
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2   State of the Art 

We believe that tangible interfaces can be useful to establish links between our mem-
ory and information. They roost abstract information in the real world through tangi-
ble reminders, i.e. tiny tagged physical objects containing a link towards information 
sources that can be accessed by several devices. In the context of meetings, physical 
documents are well suited to play the role of such tangible hypermarks, that could 
provide entry points in the digital meeting minutes, or enable live personal annotation 
of meeting parts. 

Brief states-of-the-art on tangible user interactions and document-centric tangible 
interfaces are presented in this section. Moreover, as our goal is to bridge the gap be-
tween the personal and professional information spaces by a unified ego-centric ap-
proach of both personal and professional fields, the domain of personal information 
management is introduced at the end of the section.  

2.1   Tangible User Interfaces 

Over the last couple of years, it has been demonstrated that Graspable, or Tangible 
User Interfaces (TUIs), a genre of human-computer interaction that uses physical ob-
jects as representations and controls for digital information [24], make up a promising 
alternative for the ‘traditional’ omnipresent graphical user interface (GUI). TUIs have 
also shown a high potential for supporting social interaction and collaboration. The 
majority of existing systems have targeted learning or playful learning, office envi-
ronments, or collaborative planning tasks [25]. While quite a few systems have dem-
onstrated the technical feasibility of associating digital media with tangible objects 
[12,24], these have often remained stand-alone proof of concept prototypes or appli-
cations of limited functionality. 

Two existing TUIs are particularly close to our approach: MediaBlocks [23] and 
Phenom [12]. MediaBlocks consist of generic symbolic tangibles which act as con-
tainers for information. The system enables people to use tagged physical blocks to 
“copy and paste” (or move) digital media between specialized devices and computers 
and to physically compose and edit this content. The Phenom souvenirs are personal 
iconic tangibles embedded with digital ID tags to online content (an URL).  

2.2   Document-Centric Tangible Interfaces 

Several works explored tangible interface using printed or printable documents. The 
DigitalDesk [27] is centered on the co-existence of physical papers with digital  
information. It is built around an ordinary physical desk. It identifies and tracks docu-
ments on the table, and identifies user’s pointing. Thanks to a computer-driven elec-
tronic projector above the desk, the system augments the real world with electronic 
objects onto the surface and onto real paper documents. 

In fact, documents have properties that justify their users’ acceptance. These prop-
erties are presented in this subsection, along with projects taking benefit of them. 
Unlike other augmented media, printed and written documents preserve their informa-
tion. For instance, the RASA [17] project uses augmented maps and Post-it™ notes 
for military operations. In normal conditions, the system support users with speech 
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and gesture. In case of blackout, militaries can continue their works in the classical 
way. People are able to associates pages topology and indexes to document message. 
Books with Voice [14] allows to hear oral histories thanks to books tagged with bar-
codes. This project was founded on observation that historians disposing of both 
printed document and audiotapes preferred to retrieve information in the transcript, 
because it is rich in visual information such as page numbers, indexes, etc. Moreover, 
printed documents are not intrusive. Palette [18] for example allows managing slide-
shows presentation thanks to printed index cards, identified by RFID chips, and its 
evaluation showed that users concentrated exclusively on the communication task. In 
addition, paper is a portable interface. Take for instance the interactive paper maps for 
tourists that have been studied in [19] and which allow to get multi-media information 
by pointing on interesting areas. Finally, printed document are not exclusively associ-
ated to working or unpleasant tasks. Thus, Listen Reader [2] allows consulting a 
book, while the atmosphere is adapted with music in respect to the text focused by 
readers. 

2.3   Personal Information Management 

Personal information management (PIM) supports the daily life activities people per-
form in order to manage information of all kind. Though an old concept, it has been 
receiving a growing interest in the recent years due to the increasing amount of in-
formation we face, from disciplines as diverse as information science, cognitive psy-
chology, database management or human-computer interaction [21]. 

Among personal information tools, two main approaches have been considered: 
searching versus semantic ordering. The first category contains systems such as 
MyLifeBits [10] or Stuff I’ve Seen [7]. They are improved query-based desktop 
search engines allowing querying all types of personal information in a unified way. 
Stuff I’ve Seen presents the query results as lists than can be sorted chronologically or 
by relevance. MyLifeBits also provides more flexible time-based visualizations of 
query results. Keys for retrieving personal information in these systems include the 
content of documents and other metadata than can be directly extracted (time, type of 
document, author). MyLifeBits also allows user-created collections of documents, 
opening the door to semantic annotations of personal information. Systems falling in 
the second category focus on the semantic aspect of personal information. Haystack 
[13] is a platform allowing the user to define annotations and collections over its own 
personal information to enable semantic browsing. Alternatively, SEMEX [29] tries 
to generate semantically meaningful associations automatically. 

Several studies have been conducted to understand users’ habits and needs in terms 
personal information. A particularly interesting one was conducted by Boardman [4]. 
Among other conclusions, he notes the preference of users for browsing over search-
ing and the potential of integration between emails and files that often appear to have 
strong similarities. We leverage those conclusions in our approach of personal infor-
mation management. 
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Fig. 1. Standard versus ego-centric meeting recoring, indexing and browsing 

3   Ego-Centric Indexing and Browsing of Meetings 

This section presents our ego-centric approach to index and browse meetings.  
Figure 1 represents our approach, at the applicative level, in perspective with the 
standard approach generally followed for recording, analyzing, indexing and brows-
ing meetings. On the top part, the standard approach contains three sequential steps: 
(1) first synchronized audio/video recording of meeting; (2) in a post-production 
phase, analysis of multimedia meeting records is performed on raw-data to extract 
search-able indexes, for instance speech to text, facial expressions recognition, 
document analysis, etc.; (3) and finally, users can browse on meetings using the 
previously extracted annotations as cues to access the searched parts. In our ap-
proach, at the bottom, our goal is to enrich this process with personal annotations 
and with personal in-formation. These two aspects are reflected in the following two 
tasks of our ego-centric approach: 

1. Personal live annotation of meetings using intentional tangible interaction 
techniques during the recording phase; 

2. Browsing multimedia meeting archives via personal information structure 
and tangible shortcuts as specified by the user during the recording phase. 
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3.1   Indexing and Browsing Meetings Through Personal Tangible Anchors 

Figure 2 illustrates how meetings and personal information can be intentionally linked 
thanks to tangible user interactions. It shows that meetings are limited in time, 
whereas personal information evolves during an entire person’s life. Consequently, 
we could represent all the relationships between these applications from meeting time 
point of view, which is in general decomposed in pre-production, in-meeting and 
post-production phases. 

 

Fig. 2. The schema synthesizes the interactions binding personal information to meetings in 
function of time 

Pre-production consists in preparing all the material the person aims to present dur-
ing the meeting. In classical systems dealing with meeting, the participants prepare 
slideshows, printed documents, etc. At this stage, in our approach, tangible user inter-
faces can be used to create tangible shortcuts to the prepared documents, i.e. they al-
low further access to stored multimedia information during the meeting. Moreover, a 
participant could define a set of tangible annotators to use in the in-meeting phase, in 
order to bookmark interesting information according to freely defined categories that 
match their personal information structure. 

At in-meeting phase, personal tangible shortcuts created in the previous step can 
be used to present documents to participants or share information. Furthermore, par-
ticipants can bookmark some meeting part by intentionally putting an object, repre-
senting a personal category (e.g. project’s name, person’s name, etc.) extracted from 
their personal information structure, or a personal annotation (interesting, to-do, etc.), 
on the RFID reader. Tagged printed documents can also be exchanged between par-
ticipants. This possibility has the great advantage of 1) presenting new documents  
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not uploaded in the pre-production phase and 2) allowing to annotate paper in a  
human-natural way (pen strokes, hand gesture, etc.). 

The post-production phase includes all the analysis applied to recorded data. In 
our model, the participant can not only replay (the summary of) the meeting, but also 
access to some specific parts thanks to his personal tangible bookmarks, categories or 
annotations. Moreover, “category” bookmarks used during the meeting allow to auto-
matically cluster meeting’s parts, organizing the information in respect of person 
needs and experience. 

The main contribution of the model presented in this section consists in proposing 
an alternative for accessing and browsing the meeting in a user-centered manner. This 
solution can also solve another interesting problem, which has been identified in [22] 
and taken into account only in [20]: to consider meetings as sequences of correlated 
and evolving events, instead of single and isolated experiences. 

In addition, we believe that physical documents, i.e. printed documents, can help 
achieve the same goal than tangible personal object. TDoc is a first prototype exten-
sion of the FriDoc meeting browser [15], providing exclusively tangible interaction. 
By means of printed versions of the documents discussed or presented during a meet-
ing, identified thanks to RFIDs, the user can access the vocal content recorded during 
that meeting, related to the paragraph he/she selected in the printed document using 
simple Phidgets such as sliders and IR sensors [11]. This work is a first step towards 
the implication of physical documents, and more generally tangible interactions, at 
several stages of meeting recording, analysis and browsing. Similarly to tangible ob-
jects, printed documents could indeed be engaged in three different tasks: (1) Aid 
“live” annotation of the meeting by providing tangible and collaborative mechanisms, 
like for instance voting cards (agreement/disagreement, request for a turn taking, etc.) 
that could be used for later browsing; (2) Serve as triggers to access services provided 
by the meeting room; (3) Help browsing a recorded and fully annotated meeting. 

3.2   Indexing and Browsing Meetings Through Personal Information Structure 

As we have recalled in section 2.3, our personal information (PI) contains valuable 
signs of the different roles and interests we have in life. Therefore, an abstract struc-
ture put on top of our PI, gathering pieces of meta-information about us, could be 
helpful in a professional context, by proposing an egocentric vision of professional 
document archives or events, and particularly meetings. 

The extraction of an abstract structure from raw PI data is not an easy task, though. 
Extending the previously mentioned conclusions of Boardman’s study [4], our ap-
proach is based primarily on the emails, which form a rich subset of PI, obviously 
linked to other pieces of PI (agenda, documents, visited websites, etc.). Indeed, a 
standard mailbox typically contains clues about the activities, topics of interest, 
friends and colleagues of the owner, as well as relevant temporal features associated 
to activities or relationships. Therefore, it is a rich entry point into the personal in-
formation space. Three dimensions of personal information are particularly well rep-
resented in emails: the thematic, social and temporal dimensions. We extract features 
pertaining to each dimension from the raw email archive. Thematic features can be 
extracted from the email subjects and bodies using traditional text mining methods. 
Social features stem from the social network built from the email archive considering 
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the co-occurrences of addresses in emails headers as social links between people. 
Temporal features consist in emails timestamps. On top of the features, we use  
clustering methods to help structuring the email archive according to the different di-
mensions. 

Once a structure has been elicited from emails, the remaining personal information 
can be linked to it. For this purpose, multi-media information mining techniques shall 
be used on personal information in order to extract thematic, temporal and social fea-
tures. Further, cross-media alignment techniques shall be used to link those to the 
elicited email archive structure. Obviously, professional documents (e.g. related to 
meetings) can be introduced in the process as well and thus become integrated into 
the whole structure. 

Furthermore, the personal information structure acts as a lens for visualizing PI and 
browsing through it. Visual clusters, filtering mechanisms, as well as views related to 
different dimensions of PI can be implemented more easily thanks to the PI structure 
extracted from emails. 

In the course of our research on personal information management, a system aim-
ing to extract the first-level PI structure from emails is currently being implemented. 
The data on which it works consists of the mailbox of one individual containing 
nearly 6000 emails and 3500 addresses. The social and thematic dimensions of emails 
have already been explored to some extent: (1) a social network has been built using 
similarity measures between people’s email addresses based on the frequency of ex-
changed emails between people, and this network can be visualized as a graph using 
the “spring” layout method; (2) exploiting the statistical similarity based on the co-
occurrences of words in the subjects and contents of emails, an agglomerative hierar-
chical clustering has been performed, which aims at finding a thematic organization 
of emails. The result of this clustering has been fed into a treemap visualization. How-
ever, the study conducted so far tends to show that no dimension alone (whether  
thematic, social or temporal) can fully grasp the complexity of one’s mailbox. There-
fore, our plan is to combine and link several visualization techniques applied on each 
dimension to help the user browse through his personal email archive.  

Plans for future works mainly include the reinforcement of the PI structure extrac-
tion from emails and the alignment of PI and professional information with this struc-
ture. As new dataset, the AMI meeting corpus, which notably includes emails, will be 
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Fig. 3. (1) Extraction of the personal information structure from email, (2) alignment with the 
remaining personal and professional information at the feature level and finally (3) browsing in 
the personal and professional information through the email visual clusters 
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used in order to lay the foundations of an egocentric meeting browser, taking profit of 
the PI structure’s metadata to guide the user towards the desired piece of information 
in meetings. 

4   Towards an Ego-Centric Meeting Room  

The Meeting Room in Fribourg has been built in the context of the NCCR on Interac-
tive Multimodal Information Management (IM2) [15] as show on figure 4. This appli-
cation aims at recording meeting with audio/video devices, and further at analyzing 
the captured data in order to create indexes to retrieve interesting parts of meeting re-
cordings. In this context the University of Fribourg was in charge of analyzing the 
static documents and to align them, i.e. to synchronize them, with the other meeting 
media. 

Roughly 30 hours of meeting have been recorded at the University of Fribourg 
thanks to a room equipped with 10 cameras (8 close-ups, one per participant, 2 over-
views), 8 microphones, a video projector, a camera for the projection screen capture 
and several cameras for capturing documents on the table. Camera and microphone 
pairs' synchronization is guarantied and they are all plugged to a single capture PC, 
thanks to three IVC-4300 cards. A meeting capture application pilots the capture. It 
has a user-friendly interface to start, pause and stop recording, to control post-
processing operations such as compression (for streaming and archiving) and to con-
trol file transfers to a server. This application is part of a more general Organizer tool 
for specifying the cameras and microphones to be used, the participants' position, 
camera's frame-rate, etc. The Organizer tool also assists users in the preparation, man-
agement and archiving of a meeting. This includes services for registering meeting 
participants, gathering documents and related information. 

At the time of writing, RFID readers have been integrated in our meeting room, 
one for each meeting participant. First of all, they enable participants to register to the 
meeting room, thus automatically entering the metadata related to the recordings, and 
also identifying the tagged documents. Secondly, thanks to the synchronization of 
 

 

Fig. 4. Fribourg Smart Meeting Room environment 



 An Ego-Centric and Tangible Approach to Meeting Indexing and Browsing 93 

RFID readers with the audio/video recording, users can intentionally bookmark inter-
esting meeting instants. 

In our current environment, meetings data and personal information have not been 
fully linked. The AMI meeting corpus, which notably includes emails, is currently 
used in order to lay the foundations of our egocentric meeting browser, taking profit 
of the PI structure’s metadata to guide the user towards the desired piece of informa-
tion in meetings. 

Further, we are currently working on ways to augment live meetings with multi-
modal interaction techniques such as voice or gesture. There are three aspects we plan 
to handle: 

- Controlling meeting room services (printing, projection, etc.): how multimodal in-
teraction can help interacting naturally with the meeting room to project docu-
ments, exchange documents, control a slideshow, etc.; 

- Annotating the meeting records live (personal bookmarks): how tangible interac-
tion combined with multimodal interaction can enable book-marking or annotation 
of moments of interest in a meeting for future replay or browsing (for instance us-
ing voice to label the bookmark); 

- Augmenting human/human communication and collaboration capabilities: the 
goal is to build an ambient room able to reflect and enhance the productivity of a 
meeting, for instance by projecting on the table a visualization of the dialog struc-
ture or the speakers’ time of intervention. 

Towards this end, a prototype allowing the control of a multimedia presentation via 
voice commands, gestures and tangible objects has been developed; this prototype is 
built upon HephaisTK, a toolkit allowing rapid prototyping of multimodal interfaces. 
This toolkit is based on a multi-agents middleware, using meaning frames fed by a 
central blackboard as a preliminary fusion mechanism. HephaisTK allows developers 
to rapidly prototype multimodal human-machine dialogs using SMUIML (Synchro-
nized Multimodal User Interaction Markup Language) [8]. HephaisTK and its 
SMUIML will be gradually extended and applied to handle the three applications de-
scribed above. 

5   Conclusion 

This article presents an ego-centric and tangible approach to meeting recording, in-
dexing and browsing. The approach proposed takes benefit (1) of the alignment of 
personal information with meeting archives to enable ego-centric browsing and (2) of 
tangible interactions during the meeting to add personal annotation in real time onto 
meeting data, linking meeting data with personal information. 

The article presents a preliminary solution and implementation for managing per-
sonal information through emails mining and clustering, that we believe is the core of 
personal information. Based on this central information structure we expect to build a 
personal access to meetings’ archives, thanks to emails/meetings alignment. The arti-
cle further explains how tangible interaction, as well as printed documents, can be  
another way to bridge the gap between meetings and personal information, and pre-
sents in detail its involvement in pre- and post-production as well as during meetings. 
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The article finally presents Fribourg smart meeting room and how it implements this  
ego-centric vision, and the future plans to augment it with multimodal interactions. 

Last but not least, the various stage of the vision presented in this article should be 
carefully evaluated in the future with users in order to measure not only the benefits 
gained following this ego-centric approach at the retrieval/browsing stage, but also 
how it modifies the meeting structure itself at the recording stage. 
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Abstract. A user experiment on multimodal interaction (speech, hand
position and hand shapes) to study two major relationships: between the
level of cognitive load experienced by users and the resulting multimodal
interaction patterns; and how the semantics of the information being con-
veyed affected those patterns. We found that as cognitive load increases,
users’ multimodal productions tend to become semantically more com-
plementary and less redundant across modalities. This validates cognitive
load theory as a theoretical background for understanding the occurrence
of particular kinds of multimodal productions. Moreover, results indicate
a significant relationship between the temporal multimodal integration
pattern (7 patterns in this experiment) and the semantics of the com-
mand being issued by the user (4 types of commands), shedding new
light on previous research findings that assign a unique temporal inte-
gration pattern to any given subject regardless of the communication
taking place.

1 Introduction

Multimodal interaction allows users to communicate more naturally and inter-
act with complex information with more freedom of expression than traditional
computer interfaces. The use of multiple modalities expands the communica-
tion channel between human and computer, and hence facilitates completion
of complex tasks, compared to unimodal interfaces [8]. Over the past decade,
research in the field has led to a number of theoretical advances in understand-
ing the mechanisms governing multimodal interaction. The fine-grained analysis
of multimodal interaction patterns (MIP) unveils broad classes of interaction
preferences across users that could benefit automatic recognition of speech or
gesture. Moreover, multimodal interaction research leverages recent progress in
fields of both psychology and education, using cognitive load theory (CLT) in
particular as theoretical background to explain the cognition processes behind
the acquisition and selection of modalities during human communication.

The overall aim of our research is to provide more consistent, integrated
and intuitive human-computer interaction by decreasing users’ cognitive load
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through the use of a multimodal paradigm. This paper presents the results of
a user experiment addressing the effects of cognitive load on multimodal be-
haviour. Using speech and hand gesture as input modalities, we explored the
effect of task complexity on temporal and semantic characteristics of MIP.

1.1 Related Work on Cognitive Load Theory and Analysis

Cognitive Load Theory (CLT) can be used in multimodal interaction research as
a theoretical framework for hypotheses and interpretation of fine-grained multi-
modal behaviour under different conditions. The concept of cognitive load was
developed within the field of educational psychology and refers to the amount
of mental demand imposed by a particular task. It is associated with novel in-
formation and the limited capacity of working memory [11]. Since high levels
of cognitive load can impede performance, efficiency and learning [11], CLT has
been primarily used to help teachers design more efficient educational material,
including multimedia presentations.

The close association between CLT and working memory can be understood
through the perspective of Baddeley’s theory of modal working memory [1]. This
theory contends that certain areas of working memory are reserved exclusively for
modal use e.g., the visuo-spatial sketchpad, for spatial and image representations,
and the phonological loop for verbal, linguistic and audio representations [1]. In
human computer interaction research, the benefits of multimodal interaction in
complex tasks are well established [8], and there is evidence to suggest that
users adapt their multimodal behaviour in complex situations to increase their
performance [8].

Currently, cognitive load can be measured in a number of ways, for a vari-
ety of scenarios. Most commonly, it is measured by soliciting subjective load
ratings after a task is completed [11]. Performance measures, such as scores,
error-rates and time-to-completion measures have also been used. Subjects are
rarely assessed in real-time and the probe-method, which solicits subjective rat-
ings during task completion, interrupts the user’s task flow and potentially adds
to the cognitive load [11]. A new method for measuring cognitive load which is
unobtrusive and provides results in real time is needed.

Given the known links between cognitive load and multimodality, we hypoth-
esise that many aspects of users’ multimodal interaction will change with in-
creases in cognitive load. From spatial and temporal arrangement of individual
modalities within multimodal productions; as well as the semantic and syntactic
structures of such productions, and even the selection of preferred modality and
changes in modality specific features, many features could be cues to increases
in cognitive load. The detection of these trends in user interaction could lead to
reliable indicators of increased load for the user with the added benefit of being
unobtrusively captured and continually assessed automatically by the system.

In this research, we differentiate the term “designed cognitive load”, which
refers to the complexity of the task (intrinsic and extraneous), from the term
“experienced cognitive load” which is the actual degree of demand felt by a
particular subject. Individuals’ experienced cognitive load, for the same task,
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may change from time to time. The designed (or expected) cognitive load of the
task can provide a coarse indication for the degree of experienced (or actual)
cognitive load, but the latter can only be interpreted relative to other tasks.

1.2 Related Work on Multimodal Interaction Patterns

Multimodal interaction (or integration) patterns refer to micro level relation-
ships between the inputs comprising a multimodal production, for example in
the temporal, spatial or semantic domain. Temporal relationships, in particular,
are crucial for correctly interpreting individual productions, in both human-
human and human-computer communication. Multimodal input fusion (MMIF)
systems rely on such knowledge to validate or reject potential fusion of inputs.
Most systems in the past have employed artificially or arbitrary defined values,
even though some methods using syntactic or semantic combinations based on
machine learning have been developed [3].

The qualitative and quantitative aspects of the temporal relationships have
been studied in a bid to provide a better design of MMIF modules, but also
to progress the fundamental understanding of human communication. Oviatt et
al. analysed the preferred integration patterns when using pen and speech in
the QUICKSET system; experiments involving speech and handwriting helped
distinguish two groups of multimodal integrators: sequential and simultaneous.
The first group produced multimodal inputs sequentially, one modality at a time,
whereas the second group overlapped modalities, at least partially, in the time
dimension. The authors also show that machine learning could be used to quickly
classify the user’s temporal pattern as soon as they begin to interact [5,10].

Further to simple temporal analysis, their study also determined the types
of tasks more likely to induce multimodal interaction, as opposed to unimodal
interaction. It was found that spatial location commands (e.g. modify, move)
represented 86% of all multimodal inputs, against 11% for selection commands
(e.g. zoom, label), and 3% for function commands (e.g. print, scroll). Finally,
the study also reported that the order of semantic constituents in multimodal
interactions from their corpus was different from the order in spoken English,
but mainly due to the position of the locative constituents at the beginning in
multimodal, and at the end in corresponding spoken inputs [10].

The study of MIP has been less prominent for other modality combinations,
especially when input recognition is a major concern, for example in systems
involving hand gesture. Bolt used a Polhemus sensor, based on electromagnetic
field variations, to obtain the position and orientation of the hand from a fixed
transmitter. The worn device is a cube of about 2 cm edge, and requires a chord,
hence is fairly cumbersome and obtrusive while sensing only limited information
[2]. Data gloves later allowed more complex gestural inputs due to finger position
sensing but impede movement.Vision-based hand tracking and shape recognition
became a reality a few years later, involving a range of algorithms and set-ups,
e.g., single or stereo cameras. However, vision-based recognition rates are not
yet satisfactory, so successfully combining such input with other modalities is
currently seen as the most promising path to success.
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Attempts at MIP analysis in gesture and speech systems were made, such as
Hauptmann’s framework to formalise and quantify speech and gesture interac-
tion, with a view to automation. The work studied user preferences and intuitive
behaviours when using speech and hand gesture to move a 3D virtual object [4].
Very detailed statistics were reported on the usage of words, lexicon, syntactic
structure, hand and finger gestures, highlighting the type of multimodal inter-
action preferred by users and when it occurs. However, the results appear as an
unstructured set of percentages, rather difficult to put in perspective or imple-
ment in a generic way.

Finally, a psychological approach has been used to provide a formal frame-
work for the study of speech and gesture interaction. For example, McNeill,
Quek et al. established the existence of low level relationships between gesture,
speech and gaze, suggesting cross-modal segmentation based on specific features
of those modalities [12]. More recently, an HMM-based implementation was used
to improve disambiguation of speech with gestures [6].

1.3 Objectives and Hypotheses

This study was designed to identify the relationships between combined speech
and gesture input productions and users’ cognitive load. The two input modal-
ities are very familiar to users and psychologically closely interrelated, both in
terms of planning and execution.

Specifically, we hypothesise firstly that variations in redundant and comple-
mentary multimodal productions can reflect cognitive load changes experienced
by the user. Redundant multimodal productions are ones that semantically
double-up information over a number of modalities (first example in Table 1).
Complementary productions are, conversely, those that convey different seman-
tic information over a number of different modalities in the same multimodal
production (second example in Table 1). Partially redundant productions occur
when only part of the production (i.e. the function or the object) is expressed
redundantly across modalities, while the rest of the production is unimodal or
complementary. We expected many redundant productions when the cognitive
load was low, and as cognitive load increased, complementary productions would
be more prevalent, as users would begin to instigate strategies to maximise use
of available working memory. To this end, all multimodal productions would be
classified according to the degree of semantic redundancy in each one.

The second hypothesis relates to the temporal structure of multimodal pro-
ductions. While there is evidence that users fall into one of two major groups of

Table 1. Redundant vs. complementary multimodal productions

Turn Modality Productions Semantics

REDUNDANT - Ex 1:
Select the library on a map

Speech “Select library” <Fn:select><Obj: library>

Gesture Point to library <Fn:select><Obj: library>

COMPLEMENTARY - Ex 2:
Mark an event at a location

Speech “Event” <Fn: event>
Gesture Point to library <Obj: library>
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integrator pattern (i.e. simultaneous vs. sequential integrators), we also hypoth-
esised that other factors of the communication, such as the type of information
being manipulated, e.g., a function or an object, would also affect the way the
temporal structure of the production is planned and executed. Knowledge of
these patterns, the types of users who employ them and the domains in which
they are likely to occur could make a significant contribution to the algorithms
and strategies implemented in adaptive multimodal input recognition and fusion
systems. Temporal integration patterns between two modalities can fall into one
of the nine integrator ‘shapes’, one sequential pattern and eight distinct simulta-
neous patterns [8,9,10]. However, we hypothesised that the temporal integration
patterns of each user’s production would be affected by the semantics of the
information the user is trying to convey. For example, a user may exhibit dif-
ferent simultaneous patterns when zooming-in the map than when selecting a
map entity. Hence, our null hypothesis is that the integrator pattern is chosen
independently of the information semantic.

2 Experiment Design

2.1 Wizard of Oz Set-Up

The selected modalities for the experiment were speech, hand motion and a set
of specific hand gestures, hence very prone to errors by automatic recognisers,
so we opted for a Wizard of Oz (WOz) implementation. This technique has been
identified as an essential tool for the design of multimodal interfaces, where
novel interaction patterns were expected to appear [14]. Indeed, WOz allows
intuitive interaction while removing the bias caused by input recognition errors
and misinterpreted semantic fusion of multimodal signals.

Our wizard only performed manual recognition of speech and hand shapes,
while hand motion detection was automated with an in-house, video-based recog-
nition module. The hand tracking module was used by the subject to move a
visual pointer on the system graphical interface, which was echoed on the wiz-
ard’s machine. This allowed the wizard be aware of the actions such as button

Fig. 1. Subject interacting with the system
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clicks or manual selections made by the subjects. Inputs directly generated by
the subject, or via the wizard, were then processed by the application logic in
order to update the interface and progress the task.

Subjects stood 2m away from a large, wall-sized screen displaying the appli-
cation. The camcorder and video camera used for tracking were both located on
the right hand side (all subjects reported to be right handed) as shown in Fig. 1.

2.2 Application Scenario: Tasks and Modalities

Eliciting multimodal interaction under various levels of cognitive load requires
carefully crafted task design. The use of novel modalities may only become salient
for novel application functionality, as opposed to well-known applications as sug-
gested by Lisowska and Armstrong [7]. Moreover, it has been shown that spatial
location tasks such as map interaction are more likely to generate combined mul-
timodal interaction [10]. The study scenario realised the update of a geographical
map with traffic condition information, using either natural speech, or manual
gesture, or a combination of these. Available gestures comprised:

– Deictic pointing to map locations, items, and function buttons;
– Circling gestures for zoom functions; and
– Predefined hand shapes (fist, scissors. . . ) for item tagging.

All tasks were designed to provide as much semantic equivalence as possi-
ble, meaning that atomic actions required could be completed using any single
modality or combinations thereof. Subjects were shown multiple examples of
interaction involving various blends of modalities and system functionality and
could practise them during a 30-min training session. Table 2 provides examples
of atomic actions and possible realisations using various modality combinations.
Instructions for each new task were high-level situation descriptions and subjects
were allowed freedom of inspection during their response actions. Typical sets
of actions required for each situation was taught in training.

Table 2. System functionality and examples of inputs

System Functionality Example of Interaction

Zooming in or out of a map <Point at quadrant>; or
Say: “Zoom in to the top right quadrant”

Selecting a location/item of interest <Point at location>; or
Say: “St Mary’s Church”

Tagging a location of interest with an
’accident’, ’incident’ or ’event’ marker

<Select location>and:
Say: “Incident”;
or Scissors shape

Notifying a recipient (item) of an ac-
cident, incident or an event

<Select accident>and
Say: “notify”;
or fist shape
and <Select recipient>
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Table 3. Levels of cognitive load

Level Entities Actions Distractors Time

1 6 3 2 ∞
2 10 8 2 ∞
3 12 13 4 ∞
4 12 13 4 90 sec.

There were four levels of cognitive load, and three tasks of similar complexity
for each level. The same map was used for each level to avoid differences in
visual complexity, hence designed cognitive load. The designed cognitive load
was controlled through the number of entities present on the map and actions
required in order to complete the task. Table 3 summarises the various levels
induced by changes in (i) number of distinct entities in the task description; (ii)
number of distractors (entities not needed for task); (iii) minimum number of
actions required for the task; and (iv) a time limit to complete the task.

2.3 Procedure

Twelve remunerated, randomly selected, native English-speaking participants (6
females, 6 males, aged 18-49) completed the study. As mentioned above, subjects
were asked to perform a set of tasks under 3 different conditions: gesture-only,
speech-only and multimodally. Each set consisted of 4 levels, with 3 tasks in each.
The order of these conditions and the tasks within the levels was randomised
to counter balance rank order effects. Video, hand position and UI interaction
data were synchronised and recorded digitally. Users were also debriefed after
each task level and were asked to provide a subjective ranking of the level of
load relative to the other levels in that condition. The video data collected from
the subjects was manually annotated: start and end time of speech and gesture
were annotated with a precision of 1 frame (25fps). Gesture semantics were also
tagged and speech orthographically transcribed.

3 Results

3.1 Cognitive Load Analysis Based on Multimodal Redundancy
and Complementarity

Out of 12 subjects, only the data from 9 was usable, since two users had dif-
ficulty comprehending the tasks, such that they could not achieve the goals of
the task, and one did not finish for external reasons. The data collected for the
multimodal condition for Levels 1, 2 and 4 was annotated for 6 out of these 9
users. In total, 1119 modal inputs were annotated, forming 394 turns and 644
productions. However, smaller numbers were used for the analysis of individual
levels. To measure the perceived level of cognitive load, users ranked the tasks in
increasing levels of difficulty along a 9-point Likert scale, the average difficulty
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Fig. 2. Proportion of purely redundant turns by level

score for Levels 1, 2 and 4 across these 6 users was 2.2, 4.2 and 5 respectively.
Level 3 data was not annotated due to lack of time. For each user, we classified
the multimodal turns into three groups: purely redundant, purely complemen-
tary and partially redundant turns. Fig. 2 shows the mean percentage and range
of purely redundant turns across users, for each level, over all multimodal turns.
However, statistical analysis was carried out on 5 of the 6 users; one subject
exhibited hardly any redundant behaviour, preferring to interact in a comple-
mentary manner.

We observed a steady decrease in redundancy as task difficulty increased.
An ANOVA test between-users, across levels, shows there are significant differ-
ences between the means (F =3.88 (df=2); p<0.05). Subsequent t-tests show
significant differences, 27.16% between Level 1 (62.91%) and Level 2 (35.74%)
(p=0.03, <0.05, two-tailed) and 33.61% between Level 1 and Level 4 (29.29%)
(p=0.01, <0.05, two-tailed). By the same token, we expected the rate of purely
complementary productions to increase. In Level 1, the average percentage of
purely complementary turns was 12.86%, increasing to 45.53% and 36.02% in
Levels 2 and 4 respectively. Though not significantly different, there is a clear
trend across users of an increased use of complementary multimodal productions
in higher load tasks when comparing Level 1 and 2, and 1 and 4, corroborating
with decreasing redundancy. There is also an increase in partially redundant
productions between Levels 1 and 4, with averages of 24.24%, and 34.69% re-
spectively, which can be interpreted as representative of the shift from purely
redundant to partially redundant to purely complementary as shown in Fig. 3.

Overall, we explain the lack of difference between Levels 2 and 4 in the above
features as a symptomatic of very similar subjective ratings of the difficulty
levels (respectively 4.2 and 5), but at least 2 points higher than Level 1 (2). This
was probably due to increased familiarity with the system by the time the 4th
level was attempted, highlighting the semantic distinction between designed and
experienced cognitive load. A higher designed load does not necessarily imply a
higher experienced load. Further results and discussion of this study have been
presented in [13].
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Fig. 3. Averages of modal input blends

3.2 Impact of Semantics on Multimodal Interaction Patterns

Annotation Schema. This paper focuses on bi-modal inputs only, ignoring
unimodal inputs (no tri-modal input was performed by the subjects). For the
same 6 subjects mentioned previously, these 177 bi-modal inputs constitute 29%
of all annotated inputs. Our annotation schema is based on the bi-modal in-
tegrator patterns defined by Oviatt et al. [9,10], which comprises a sequential
pattern (SEQ) and 9 possible simultaneous patterns (SIM). However, since three
modalities were available in our system, we analysed the temporal relationship
within any pair of inputs, disregarding the type of modality used. This reduces
to 1 SEQ and 6 SIM patterns only as shown in Fig. 4. The patterns are based
on the temporal features defined in [9,10], with a coordination between signals
accuracy increased to 50ms (100ms in cited work).

Fig. 4. Graphical representation of integrator patterns

The semantics of the performed commands were also annotated and regrouped
into 4 major productions: select (any entity selection), zoom (zoom in or out of
the current map), tag (tagging of any entity), end (end of task). We did not
perform statistics on the notify production since it received only 6 multimodal
inputs across users.

Results. In order to test the hypothesis that integrator patterns are affected by
the semantics of the command, we carried out a Chi-square test of independence
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Table 4. Observed frequencies of integrator patterns vs. production

Integrator
pattern

Productions
Total

Select Zoom Tag End
0 10 2 0 10 22

1 10 3 2 6 21

2 5 0 0 1 6

3 62 43 14 4 123

4 0 0 0 0 0

5 3 0 0 0 3

6 0 0 2 0 2

Total 90 48 18 21 177

using the observations from the experiment shown in Table 4. This data provides
evidence of a significant relationship between the integrator pattern and the
production (χ2 = 67.01 < χ2critical = 25, α = 0.05, df=15). The integrator
pattern 4 had to be discarded in this analysis as no input of this type was
collected during the experiment.

Similarly, we tested the independence of integrator patterns and subject iden-
tity. Again, the data provides evidence of a significant relationship between
the integrator pattern and the subject identity (χ2 = 77.59 < χ2critical =
37.65, α = 0.05, df=25). The integrator pattern 4 was discounted in this analysis
as no such input was collected during the experiment.

4 Discussion and Future Work

The experiment presented in this paper is part of our ongoing research on mul-
timodal interaction behaviour. In particular, we found that the reduced level
of redundancy, combined with the increased level of complementarity variations
across modalities reflects changes in cognitive load. As the cognitive demand
increases, users’ multimodal productions tend to become complementary. We
interpret that this is due to Baddeley’s modal Model of Working Memory, which
suggests there are areas of working memory that are dedicated exclusively for
modal use. During interaction at high levels of load, productions are planned so
as to maximise the usage of modal working memory. This could be achieved by
channelling the required semantic chunks to areas allocated to different modal-
ities, with the least amount of replication possible. This hypothesis results in
increased purely complementary productions and a reduction in purely redun-
dant productions, as cognitive load increases. The results of this study give
initial evidence for this behavioural symptom of cognitive load management em-
ployed by users, and provide a potential multimodal cue candidate for revealing
changes in cognitive load. The results raise some interesting questions about
the use and suitability of multimodal features as indices of cognitive load. It is
recognised that the number of subjects used in the results is relatively low, and
further validation and evaluation of the results is necessary. The subjects who did
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complete the study rated the high load tasks only as moderately difficult, and
this is attributed to a lack of understanding of the full requirements of the so-
lution. The subjects did not receive feedback as to how well they ’scored’ –
hence had no indication as to their own performance. It is sufficient that these
tasks were ranked higher than the rest, anecdotally we can report high levels of
frustration.

We also analysed the relationship between temporal integration patterns and
the semantics of the information conveyed by the user. The data collected during
our experiment indicates that there is, in fact, a significant relationship between
the integration pattern (7 classes in this experiment) and the semantics of the
command (4 classes in this experiment). Recognising that users may slightly
adapt their integration pattern according to the semantics of the message being
conveyed extends the previous findings of Oviatt et al. They originally estab-
lished a relationship between semantics and multimodal vs. unimodal interaction
[10], then concentrated on user categorisation according to integration patterns
[8,9]. However they do not seem to have explored the finer relationships between
semantics and integrator patterns.

In parallel developments, Oviatt et al. demonstrated through longitudinal
studies that users tend to entrench in a given pattern, allowing automatic se-
lection through machine learning for example [5]. Our experimental data seems
to be valid in view of these findings since it indicates that integration patterns
are significantly linked to the identity of the subjects. This suggests further,
however, that multimodal integration patterns are a personal trait of individual
users, and prompts the question of the existence of broad classes of users, who
interact with similar temporal pattern-semantic combinations. While simple ma-
chine learning techniques are effective to assign a unique integration pattern to a
user [5], broader user classes may be required to train learning models to assign
integration patterns according to the semantics being conveyed. Also, the specific
format and affordances of the user interface, as well as the system functionality
may impact the integration patterns used during interactions.

In the long term, the benefits of such a refinement include more accurate mul-
timodal input fusion but may also help predict multimodal blends and patterns
based on the dialogue state. At present though, we plan further user experiments
to capture longitudinal data that can counter balance the learning effects (or dis-
comfort [7]) caused by the use of both novel modalities and novel functionality.
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Abstract. This paper outlines first the BET method for task-based
evaluation of meeting browsers. ‘Observations of interest’ in meetings
are empirically determined by neutral observers and then processed and
ordered by evaluators. The evaluation of the TQB annotation-driven
meeting browser using the BET is then described. A series of subjects
attempted to answer as many meeting-related questions as possible in a
fixed amount of time, and their performance was measured in terms of
precision and speed. The results indicate that the TQB interface is easy
to understand with little prior learning and that its annotation-based
search functionality is highly relevant, in particular keyword search over
the meeting transcript. Two knowledge-poorer browsers appear to offer
lower precision but higher speed. The BET task-based evaluation method
thus appears to be a coherent measure of browser quality.

Keywords: Multimediameetingbrowsers, task-based evaluation, human-
computer interaction, human factors.

1 Introduction

As more and more meetings are being recorded and stored, the demand for appli-
cations which access this data to find relevant information increases as well. The
goal of this paper is to outline the BET evaluation method for meeting search
and browsing interfaces, and to argue that this method captures significant as-
pects of meeting browser quality, based on the analysis of first-time usage of
several meeting browsers. The BET evaluation of the TQB interface aims first
at finding the most useful features of the meeting browser, i.e. the ones that
appear to be used in correlation with the highest BET scores. In addition, the
experiment aims also at comparing these with those obtained for other browsers,
and to assess the validity of the BET method itself.
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The BET will be briefly explained and discussed in Section 2, followed by
a comparison with other approaches in Section 3. The features of the TQB
annotation-based meeting browser will be described in Section 4. The details of
the main evaluation experiment reported here appear in Section 5, while results
are discussed in Section 6. These results are compared to a similar experiment
with two knowledge-poorer browsers in Section 7. Perspectives for further anal-
yses appear in Section 8.

2 The Browser Evaluation Test (BET)

2.1 Designing a BET Evaluation

The BET is an extensive framework containing guidelines and tools that al-
low evaluators to construct a browser-independent evaluation task, and then to
test the performances of a given browser on that task [1]. Each evaluation task
is meeting-specific and consists of a set of observations of interest determined
by a pool of observers who have watched closely the meeting recording, and
have noted the most salient facts and events that occurred in the meeting (ob-
servers are not meeting participants). The observations are sampled, and possibly
edited, to produce a final list for each meeting. The actual testing of a browser
requires subjects to answer as many binary-choice test questions as possible in
a fixed amount of time, by using the meeting browser to access the meeting.
The binary-choice test questions are pairs of true/false statements constructed
by the observers from their observations of interest, as explained below.

Using the BET requires therefore a one-time investment in collecting and
possibly annotating the corpora, collecting and preparing the observations, and
possibly running benchmark tests with baseline browsers such as media players.
Subsequent browser tests take advantage of this one-time effort to run tests
and to produce comparable scores. While the details of the testing protocol can
vary according to the evaluators’ goals, we believe that the list of observations
will remain a valuable resource associated to these meetings, which should be
extended to other meetings in the future.

From the very first BET experiments [1], two important parameters charac-
terized the subjects’ performance. The first one is precision (or accuracy), i.e.
the proportion of correctly answered questions among all true/false statements
that were seen, a number between 0 and 1. The second one, called speed, is the
average number of questions that were processed per minute. These scores paral-
lel somewhat the precision and recall scores used in information retrieval. None
of them is sufficient alone to capture the overall quality of a meeting browser,
as trivial strategies can maximize them independently, but not jointly. However,
while it is certainly possible to compute the average of precision and speed, a
more nuanced integrative score, which factors out the different strategies of the
subjects (maximizing either precision or speed), must yet be found.
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2.2 Collecting the Observations

BET questions are derived from observations of interest produced by a set of
observers using dedicated interfaces. Observers can see the full recordings of
every media source—audio, video and slides—for each meeting they work on.
There is no time limit, but observers are asked to produce a minimal amount of
observations, for instance 50 observations for a 50-minute meeting.

Each observer is instructed to produce observations about facts or events that
the meeting participants appeared to consider interesting. The instruction is kept
generic on purpose, in order not to influence observers towards a particular type
of observation. Such a definition is compatible with many types of observations,
even though it is possible to argue that some facts which do not seem impor-
tant to participants could be important to an external observer, depending on
their interest, which is a relative notion. We argue however that by selecting
various subsets from the lists of observations produced using the BET, one can
accommodate a wide range of evaluation objectives.

Observers create first a list of observations, which are automatically time-
stamped by the BET observer interface with the media time. Observers are also
asked to estimate the “locality” of each observation, i.e. whether it applies around
the current media time or throughout the meeting. Observations should also be
difficult to guess without access to the recording, and must be stated in a simple
and concise manner. After they have completed their list, observers are asked to
rate the importance of observations (on a five-point scale) and to create a false
version of each of them. The result for each observation is a complementary pair
of statements, one true and one false, both of which will be later presented to
subjects during testing.

2.3 Validation, Editing, Grouping and Ordering

Once collected, observation pairs (a true and a false statement) are discussed
by the BET experimenters and by browser designers. At this stage, some of the
observations can be rejected for a number of reasons, which are carefully ex-
plicited to ensure that they are browser-neutral, and do not select observations
that are better suited to a particular kind of browsing technique. These reasons
are: (1) statements that are true at one moment but false at another moment of
the meeting; (2) statements that are considered incomprehensible to native En-
glish speakers because of serious grammatical or typographical errors, or unclear
formulation; (3) statements that are too easily guessable; (4) true and false state-
ments that aren’t parallel enough, or are not mutually exclusive; (5) statements
based on “censored” material, i.e. on segments which participants had asked to
be left out of the recording. Rejection of observations requires consensus among
different experimenters, working on potentially very different browser designs.
In addition to rejection, only very limited editing of statements is also allowed
(for any of the above reasons) in order to avoid rejecting too many observations.

In many cases, different observers make similar observations—a proof of
inter-observer agreement which is exemplified below (Section 2.4). Therefore,
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observations must be manually grouped by the experimenters, so that subjects
are tested using a single representative from the group, in order to avoid redun-
dancy. The representative observation of the group is manually selected by the
experimenters based on the following criteria, which (again) avoid favouring one
type of browser over another. The selected pair of true/false statements must
(1) meet the validity criteria stated above; (2) be concise and crisply expressed;
(3) express, if possible, only one factual point; (4) share the same keywords as
the whole group; and (5) be difficult to guess.

The edited representative observations are finally ordered, first by size of
group, because this represents the number of times the observation was made
by independent observers, then (for groups of equal size) by median importance
adjusted per observer, then by mean adjusted importance, and finally by media
time. The ordering can be changed to suit the evaluators’ goals, though in some
cases the answer to one question could reveal the answer to following ones.

2.4 Resulting Test Material

Three meetings from the AMI Corpus [2] were selected for the observation col-
lection procedure: IB4010, IS1008c, and ISSCO-Meeting 024. The meetings are
in English, and involve four participants, native or non-native English speak-
ers. In the first meeting, the managers of a movie club select the next movie
to show; in the second one, a team discusses the design of a remote control; in
the third one, a team discusses project management issues. Although the first
two meetings are in reality enacted by researchers or students, the movie club
meeting (IB4010) appears to be more natural than the remote control meeting
(IS1008c), probably due to the familiarity of the participants with the topic.
For each of these three meetings, BET observations were collected, edited and
ordered, this resource being now publicly available at http://mmm.idiap.ch. In
the evaluations below, the order based on importance was kept constant.

For these meetings, respectively 222, 133 and 217 raw observations were col-
lected, from respectively 9, 6 and 6 observers, resulting in respectively 129, 58
and 158 final pairs of true/false observations. As initial observations are grouped
according to their similarity, as explained above, the average size of the groups
(1.72, 2.29 and 1.37 observations per group) provides a measure of inter-observer
agreement. While these values are not very high with respect to the number of
observers, it is more eloquent to consider only the agreement for the observations
that were answered by at least half of the subjects in the experiments on TQB
(i.e. 16 for IB4010 and 8 for IS1008c). As these were ranked by importance, the
average number of observers having made these observations was around 5 for
both meetings, i.e. 55% and 83% of the observers agreed upon them.

As an example, the first two pairs of true/false observations for IB4010 were:
“The group decided to show The Big Lebowski” vs. “The group decided to show
Saving Private Ryan”, and “Date of next meeting confirmed as May 3rd” vs
“Date of next meeting confirmed as May 5th”. For the IS1008c meeting the first
pair is: “According to the manufacturers, the casing has to be made out of wood”
vs. “According to the manufacturers, the casing has to be made out of rubber”.

http://mmm.idiap.ch
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3 Comparison to Other Approaches

The evaluation of interactive software, especially of multi-modal dialogue sys-
tems, is still an open problem [3,4,5]. A possible approach in the case of meeting
browsers is based on the ISO/IEC standards for software evaluation, especially
for task-based evaluation or for evaluation in use [6,7]. The three main aspects of
quality that are evaluated in such approaches are often summarized as effective-
ness (the extent to which the system helps the user to successfully accomplish
a task), efficiency (the speed with which the task is accomplished) and user-
satisfaction (measured using questionnaires). Depending on the nature of the
system that is evaluated, these three broad quality characteristics can be sub-
stantially particularized and/or extended [8]. A well-known approach to dialogue
system evaluation, PARADISE [9], predicts user satisfaction from task comple-
tion success and from a number of computable parameters related to dialogue
cost. However, depending on the specificity of the modules of a dialogue system,
each of them can also be evaluated separately using black-box methods [10].

The goal of the BET is to provide an evaluation framework that sets as few a
priori constraints as possible on the task of meeting browsing and on the func-
tionalities of a meeting browser. The BET differs from classic usability testing
as the details of the task are not predetermined by designers or evaluators. The
process of collecting observations determines only in an indirect manner what
the users of a meeting browser would primarily look for in a meeting (informa-
tion type and content), and therefore the BET can be applied independently of
the specifications of a meeting browser. This approach tempers undue influence
of each observer’s own special interests, and avoids the introduction of exper-
imenter bias regarding the relative importance of particular types of meeting
events, e.g. related to a particular modality that a given browser might focus
on. The precision and speed of the subjects using a specific browser to answer
questions based on BET observations respectively reflect the effectiveness and
efficiency of the meeting browser, if the subjects’ abilities are factored out across
a large pool of subjects. Finally, in the setting described here, the BET measures
browser quality at first-time usage, and not occasional or long-term usage, which
would require extensive training of the subjects.

4 The Transcript-Based Query and Browsing Interface

In the study reported here, the TQB interface [11] was submitted to the BET via
a web browser. TQB was designed to provide access to the transcript of meetings
and to their annotations, as well as to the meeting documents, as these language-
related modalities are considered to be the main information vector for human
interaction in meetings. Along with the transcript, the following annotations
are stored in a database to which the TQB interface gives access: segmentation
of individual channels into utterances, labelling of utterances with dialogue act
tags (e.g. statement, question, command, or politeness mark), segmentation of
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the meeting into thematic episodes, labelling of episodes with salient keywords,
and document-speech alignment using explicit references to documents [2,12].
For the BET evaluation, manual transcripts and annotations from the AMI
Corpus are used, in order to focus the test on the quality of the interface and
not on the quality of automatic annotation.

TQB allows users to search, within a given meeting, for the particular ut-
terances that satisfy a set of constraints on the transcript and the annotations
(Figure 1). TQB displays in one frame the annotation dimensions that are search-
able for the selected meeting, with a menu of possible values for each of them,
except for the transcript, which can be searched as free text. The results of a
query, i.e. the utterances that match all the constraints, are displayed in another
frame. These utterances can be used as a starting point to browse the meeting,
by clicking on one of the retrieved utterances, which makes the transcript frame
scroll automatically to its position. The enriched transcript and the meeting
documents constitute the two principal frames occupying the center of the TQB
interface. Browsing through these frames is enhanced by the possibility to listen
to the recording of each utterance, and to display documents that are explicitly
referred to at a given point of the conversation [11].

To increase the informativeness of the BET evaluation, the users’ interactions
with TQB are closely monitored. The logging mechanism has two components:
the first one logs all the queries to the database with their timestamps, while
the second one logs the actions performed by the user in the other frames. These
include the state and position of the audio player and of the scrollbars (sampled
every 30 seconds), and the user’s mouse clicks.

Fig. 1. View of the Transcript-based Query and Browsing Interface (TQB) with BET
true/false observations displayed in the upper-left corner



114 A. Popescu-Belis et al.

5 BET Setup for TQB Evaluation

Two of the three meetings for which BET observations exist were used for the
evaluation of TQB, namely IB4010 and IS1008c. The evaluation proceeds as
follows. The subjects register with their email as a unique identifier and state
their proficiency in English. The subjects then read the instructions for the
experiment on their computer screen, explaining first the BET guidelines, and
then the principles of the TQB interface, using a snapshot and 4-5 paragraphs
of text. The subjects did not have the opportunity to work with TQB before
being tested on the first meeting, so this was their very first occasion to explore
the functions of TQB.

The BET master interface displays one by one the pairs of true/false state-
ments corresponding to observations, following the order described above. Using
TQB to browse the meeting, each subject must determine the true statement
and (implicitly) the false one. When the choice is validated, the BET interface
automatically displays the following pair of statements, and so on until the time
allowed for the meeting is over. After a short break, the subject proceeds to the
second meeting. The duration allowed for each meeting was half the duration of
the meeting: 24’40” for IB4010, and 12’53” for IS1008c; the timing was managed
by the BET master interface.

TQB was tested with 28 subjects, students at the University of Geneva, mainly
from the School of Translation and Interpreting. Results from 4 other students
were discarded for not completing the two meetings. The average proficiency
on a 4-point scale (from ‘beginner’ to ‘native’) was 2.6, median value being
3 (‘advanced’). Half of the subjects started with IB4010 and continued with
IS1008c, and the other half did the reverse order, thus allowing for differentiated
results depending on whether a meeting was seen first or second within the trial.
Performance was measured using precision and speed, as defined above.

6 BET Results for TQB

6.1 Overall Scores and Variations

The overall precision, averaged for 28 subjects on two meetings, is 0.84 with
a ±0.05 confidence interval at 95% level (confidence intervals will be regularly
used below). The overall average speed is 0.63±0.09 questions per minute. These
values do not vary significantly (less that 1%) when they are computed for the
two subgroups of 14 subjects who saw the meetings in a different order (IB/IS
or IS/IB): only the confidence intervals increase, by 20 to 50%.

The average speed and precision vary more markedly across the two meetings,
though however these differences are not significant at the 95% confidence level:
speed and precision are 0.67±0.10 and respectively 0.85±0.05 for IB4010, both
higher than the respective values for IS1008c, 0.57 ± 0.13 and 0.79± 0.10. If the
statistical significance was higher, one could conclude that IB4010 is easier than
IS1008c from the BET perspective.
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Fig. 2. IS1008c: scores of each subject and average score with 95% confidence intervals
when the meeting is seen first (diamonds �) and when it is seen second (squares �).
Speed appears to be significantly higher in the second case, but not precision.

The performance of each group (IB/IS vs. IS/IB) on the IS1008c meeting is
shown in Figure 2: diamonds (�) correspond to subjects seeing IS1008c as their
first meeting, while squares (�) represent subjects seeing IS1008c as their second
meeting, after training on IB4010. The average values of precision and speed are
higher when the meeting is seen second, certainly because subjects were able to
get training with the TQB interface. The 95% confidence intervals are however
strictly disjoint only for speed (0.38± 0.12 vs. 0.77± 0.17 questions per minute)
but not for precision (0.75 ± 0.17 vs. 0.84 ± 0.09). Similarly, for IB4010, speed
is significantly higher (exactly with 94% confidence) when the meeting is seen
second than when it is seen first, while precision increases less significantly.

These results point to an important property of the TQB interface that is
highlighted by the BET evaluation, namely its learnability. A single previous
trial appears to be sufficient to improve scores, indicating that TQB is an easily
learnable interface. These results seem to hold independently of the individual
performances of the subjects (which might maximize either precision or speed),
but an assessment using more meetings would enable us to extend the study of
the learning curve beyond the first two ones.

6.2 Use of TQB Features by BET Subjects

The analysis of TQB features used during the experiments shows that queries
to the transcript and annotation database are quite extensively used to browse
meetings. Subjects submit on average 2.50±0.54 queries for each BET question,
with no significant differences between the two groups (IB/IS: 2.40 ± 0.92 vs.
IS/IB: 2.59 ± 0.57). There is however a significant difference between the two
meetings: the remote control one elicits twice as many queries per BET question
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as the movie club one (IS1008c: 4.16 ± 1.53 vs. IB4010: 2.12 ± 0.44), a fact that
could be related to the differences in meeting difficulty alluded to above.

When subjects use TQB queries, they click on average in 35% of the cases on
one or more utterances returned by the query, to visualize them in context within
the transcript window—this figure provides thus a measure of the relevance of
query results. Again, while the average is basically the same for the two groups,
there is a difference between meetings: 39% for IB4010 vs. 27% for IS1008c.
So, although more queries per BET question are used for IS1008c, clicking on
the results is less frequent for this meeting, both facts being consistent with a
higher perceived difficulty. Viewing the utterances within the meeting transcript
appears to be sufficient to answer BET questions, as listening to the related
audio is very infrequent, only about twice per meeting.

Another measure of the importance of TQB queries is the increasing corre-
lation, from the first to the second meeting of a trial, of the number of queries
and the precision of the answers. Pearson correlation (across subjects) between
the precision scores and the average number of queries launched for each BET
question is 0.49 overall (IS/IB group: 0.70 and IB/IS group: 0.37). For each
meeting, the correlation increases after learning: for IB4010 it goes from 0.33 to
0.76, and for IS1008c from −0.39 to 0.28. Quite naturally, speed is however nega-
tively correlated with the number of queries per BET question, overall at −0.32.
Put simply, these figures show that using queries helps subjects to increase their
precision, while at the same time slowing them down slightly.

Statistics over all the 550 queries produced by the 28 subjects indicate that
most of the queries are keyword related: 43% look only for a specified word (or
character string), while an additional 31% look for a specific word uttered by a
particular speaker, and 7% for a word within a given topic episode. Some other
constraints or combinations of constraints are used in 1–3% of the queries each:
word(s) + dialogue-act, word(s) + person + dialogue-act, topic, person, word(s)
+ topic + person, etc. The fact that subjects use the query functionality mainly
to do keyword search over the transcripts probably reflects the influence of pop-
ular Web search engines, and suggests that annotations other than transcript
could better be used for automated meeting processing (e.g. for summarization)
rather than directly for search by human users.

6.3 Question-Specific Scores

Moving further into the analysis of subjects’ answers, it is possible to compute
the above statistics separately for the correct answers, and for the wrong ones,
and to compare the results. For instance, the average number of queries per BET
question, computed only for the questions to which a subject answered correctly,
is 2.41±0.58, while the same average over the wrong answers is 2.01±0.53. The
difference is more visible for the more difficult meeting, IS1008c (3.38 ± 1.10
queries per correct answer vs. 2.37 ± 1.43 for wrong answers) than for IB4010
(2.09 ± 0.47 vs. 1.88 ± 0.74).

The detailed analysis of scores indicates that these vary considerably with
each question. As the order of the questions was kept constant, there are less
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and less available answers per question as one moves forward through the list. For
instance, all 28 subjects answered the first eight questions for IB4010, but only
the very first question for IS1008c was answered by all subjects. When IS1008c
was seen first, two subjects spent all their time on the first question only, and
only 8 subjects (out of 14) managed to answer the first five questions; when
IS1008c was seen second, 13 subjects managed to answer the first five questions.
As an example, average values for precision and speed are shown in Figure 3 for
the first six questions of IS1008c: while scores generally increase after learning,
there is considerable variation across questions, e.g. improvement of precision
is not the same for all questions, while speed sometimes even degrades in the
second round (for the 4th and 6th questions).

These results indicate that performances should be analyzed separately for
each question, as their nature requires different competencies and browser func-
tionalities. To take an example, it appears that the most clicked utterance among
all those retrieved through TQB queries is the following one, from IB4010: “Uh
Goodfellas, I didn’t see it”. This utterance was clicked 18 times, out of which 16
were in relation to the fifth BET question for IB4010: “No one had seen Good-
fellas” vs. “Everyone had seen Goodfellas”. Quite obviously, in this case, finding
this utterance provides implicitly the answer to the BET question through an
immediate inference, as the second statement cannot be true.
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Fig. 3. IS1008c: precision and speed for the first six BET questions, when the meeting is
seen first (diamonds �) and when it is seen second (squares �). Performances generally
increase in the second case, but there is considerable variation across questions.

7 BET Results for Other Browsers

In another series of experiments [13], conducted by the IDIAP Research Institute
and the University of Sheffield, four meeting browsers or “conditions” were tested
with the BET, in a slightly different setting than the one described above. Usable
data was obtained from 39 subjects: each subject performed a calibration task
(answering questions using a very simple browser), and one of the following
browsers: base (15 subjects), speedup (12 subjects), and overlap (12 subjects).
Unlike TQB, none of these meeting browsers relied on manual annotation of the
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data or on human transcripts. The ISSCO-Meeting 024 was used for calibration,
and the other two meetings (IB4010 and IS1008c) were used alternatively in the
different conditions.

The calibration condition presented a large slide view, 5 video views, the
audio, a timeline, and slide thumbnails. The base condition played audio and
included a timeline, scrollable speaker segmentations, a scrollable slide tray,
and headshots with no live video. The speedup condition was exactly like the
base condition except that it allowed accelerated playback with a user-controlled
speed between 1.5 and 3 times normal speed. The overlap condition duplicated
the speedup condition by offering simultaneously the first half of meeting on the
left audio channel of the subject’s headphone, and the second half of the meeting
on the right channel, requiring the subjects to focus on one channel at the time.

Raw performance scores for both meetings were as follows for the three con-
ditions (see [13, Section 3] for more details). For the base condition, average
precision and speed were respectively 0.77 and 1.2 questions per minute; for
the speedup condition, 0.83 and 0.9 questions per minute; and for the overlap
condition, 0.74 and 1.0 questions per minute. The average precision is generally
below the values obtained by TQB (0.84 ± 0.05 for TQB), while speed is always
higher (0.63 ± 0.09 for TQB). These results are quite surprising, as TQB pro-
vides access to the transcript, which should considerably improve its information
extraction capabilities. In addition, although TQB subjects were not native En-
glish speakers unlike those of the other two browsers, data from TQB shows that
proficiency is in fact better correlated with precision (at 0.65 level) and much
less with speed, therefore the proficiency factor might not explain the difference
in precision. Other factors must thus be found, by analyzing experimental logs,
to account for these differences.

8 Perspectives

The results of the Browser Evaluation Test method presented here show that the
BET captures a number of properties related to browser quality, which match
our a priori intuitions and therefore contribute to validate the BET evaluation
method itself. These results must be further confirmed through future analyses,
in particular question-specific ones, and possibly through experiments with more
browsers and subjects. Future analyses could better model, for instance, the
notion of ‘strategy’, i.e. a subject’s bias towards maximizing either precision or
speed, in order to construct a more global performance score, as an “average”
of precision and speed.

The BET method offers a generic, task-based solution to the problem of evalu-
ating very different meeting browsers, as it sets few constraints on their function-
alities. The set of BET observations created for three meetings will constitute
a valuable resource for future evaluations, along with the scores obtained in the
experiments presented here, which will provide an initial baseline to which future
interfaces can be compared.
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Abstract. In this paper, we present a detailed analysis of the face recog-
nition problem in smart room environment. We first examine the well-
known face recognition algorithms in order to observe how they perform
on the images collected under such environments. Afterwards, we inves-
tigate two aspects of doing face recognition in a smart room. These are:
utilizing the images captured by multiple fixed cameras located in the
room and handling possible registration errors due to the low resolu-
tion of the aquired face images. In addition, we also provide comparisons
between frame-based and video-based face recognition and analyze the
effect of frame weighting. Experimental results obtained on the CHIL
database, which has been collected from different smart rooms, show
that benefiting from multi-view video data and handling registration er-
rors reduce the false identification rates significantly.

1 Introduction

Face recognition has attracted significant research efforts that are mainly fu-
eled by security applications. Recently, face recognition for smart interactions
has become another application area of significant interest [1]. There have been
many papers published on the use of face recognition technology in human-robot
interactions [2], smart cars [3], human-computer interfaces [4] as well as image
and video retrieval applications [5], [6], [7].

One of the most interesting smart interaction applications is face recognition
in smart rooms. Sample application areas can be a smart store that can rec-
ognize its regular customers while they are entering the store; a smart home,
where family members can be identified while they are entering the rooms of
the house and their location can be determined in order to automatically route
incoming phone calls; a smart lecture or meeting room, where the participants
can be identified automatically and their behaviours can be analyzed through-
out the meeting or the lecture. This group of applications requires identification
of people without any cooperation, and under uncontrolled conditions, without
any constraints on head-pose, illumination, use of accessories, etc. Moreover, ac-
cording to the distance between the camera and the subject the face resolution
varies, and generally the face resolution is low. In these respects, face recognition
in smart rooms is a very difficult task. The only factor that can help to improve
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Fig. 1. Sample views of the smartrooms

the face recognition performance in smart rooms is the video data of the individ-
uals from multiple views, provided by several cameras that are mounted in the
smart room. Sample images from different smart rooms are shown in Figure 1.

Taking these facts into consideration, in this paper we present a detailed
analysis of the face recognition problem in a smart room environment. We first
compare the well-known face recognition algorithms in order to observe how
they perform on the images collected in such environments. Afterwards, we in-
vestigate two typical aspects of doing face recognition in a smart room. These
are: utilizing the images captured by multiple fixed cameras located in the room
and handling possible registration errors due to the low resolution of the aquired
face images. We propose a camera-weighting scheme in order to be able to give
higher weights to the cameras that have a better view of the person. To be able
to handle registration errors, we generate additional registered samples from the
manually labelled training images by moving the manual eye label locations in
the neighborhood and doing registration with respect to the newly obtained eye
coordinates. Note that, even with manual labelling, due to the low resolution of
the face images, there can be slight errors in the eye center coordinates. In ad-
dition, we also provide comparisons between frame-based and video-based face
recognition and analyze the effect of frame weighting. We conduct the experi-
ments on a data corpus that has been collected at different smart rooms. The
experimental results indicate that utilizing video data and generating additional
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samples reduces the false identification rates significantly. Camera and frame
weighting have been found to improve the performance further.

The organization of the paper is as follows. In Section 2, local appearance-based
face recognition using the discrete cosine transform is explained briefly. A baseline
face recognition system is described in Section 3. In Section 4, experimental results
are presented and discussed. Finally, in Section 5, conclusions are given.

2 Local Appearance-Based Face Recognition Using
Discrete Cosine Transform

Local appearance-based face recognition was proposed as a fast and generic ap-
proach [8], [9] and does not require detection of any salient local regions, such
as eyes, as in the modular or component based approaches [10], [11]. The un-
derlying ideas for preferring a local appearance-based approach over a holistic
appearance-based approach are as follows: (i) In a holistic appearance-based
face recognition approach, a change in a local region can affect the entire fea-
ture representation, whereas in local appearance-based face recognition it affects
only the features that are extracted from the corresponding block while the fea-
tures that are extracted from the other blocks remain unaffected. This property
provides robustness against both local registration imperfections and expression
variations, (ii) a local appearance-based algorithm can facilitate weighting of
local regions. It can put more weight to the regions which are found to be more
discriminant.

In order to represent the local regions, the discrete cosine transform (DCT)
is used. Its compact representation ability is superior to that of the other widely
used input-independent transforms like the Walsh-Hadamard transform.
Although the Karhunen-Loeve transform (KLT) is known to be the optimal
transform in terms of information packing, its data dependent nature makes it
infeasible for some practical tasks. Furthermore, DCT closely approximates the
compact representation ability of the KLT, which makes it very useful for rep-
resentation both in terms of information packing and in terms of computational
complexity.

Fig. 2. System architecture of the face recognition system
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Feature extraction using the local appearance-based face representation can
be summarized as follows: A detected and normalized face image is divided
into blocks of 8 × 8 pixels size. Then the DCT is applied on each block. The
obtained DCT coefficients are ordered using zig-zag scanning. From the ordered
coefficients, M are selected according to a feature selection strategy, and then
normalized to unit norm, resulting in an M -dimensional local feature vector.
These extracted local features are then concatenated to represent the entire face
image (Figure 2). For details of the algorithm please see [8], [9].

3 Baseline Face Recognition System

In order to provide an identity estimate, the face recognition system processes
multi-view, multi-frame visual information. The system components are: image
registration, feature extraction, score normalization, fusion over camera-views
and fusion over image sequence.

The baseline system receives an input image and the eye-coordinates of the
face in the input image. The face image is cropped and registered according to
the eye coordinates. The local appearance-based face recognition that is men-
tioned in Section 2 is used for feature extraction. The first DCT coefficient is
removed since it only represents the average value of the image block. The first
M coefficients are selected from the remaining ones. To remove the effect of in-
tensity level variations among the corresponding blocks of the face images, the
extracted coefficients are normalized to unit norm.

Classification is performed by comparing the extracted feature vectors of the
test image with the ones in the training database. Each camera view is compared
with all the others. Distance values of the 10-best matches obtained from each
frame are normalized using the Min-Max rule, which is defined as:

ns = 1 − s − min(S)
max(S) − min(S)

(1)

where, s corresponds to the distance value of the test image to one of the ten
closest training images in the database, and S corresponds to a vector that
contains the distance values of the test image to the ten closest training images.
The division is subtracted from one, since the lower the distance is, the higher the
probability that the test image belongs to that identity class. This way, we obtain
a confidence score that is normalized to the value range of [0, 1], closest match
having the score ‘1’, and the furthest match having the score ’0’. These scores
are then normalized by dividing them by the sum of the confidence scores. The
obtained confidence scores are summed over camera-views and over the image
sequence. The identity of the face image is assigned as the person who has the
highest accumulated score at the end of a sequence.

4 Experiments

The experiments have been conducted on a database that has been collected by
the CHIL consortium for the CLEAR 2006 evaluations [12]. The recordings are
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Fig. 3. Views of the UKA smartroom taken at the same instant from the four cameras

from lecture-like seminars and interactive small working group seminars that have
been held at different CHIL sites: AIT, Athens, Greece, IBM, New York, USA,
ITC-IRST, Trento, Italy, UKA, Karlsruhe, Germany and UPC, Barcelona, Spain.
Each smartroom has four cameras, one at each corner, which are labeled from 1 to
4. Sample images from the recordings can be seen in Figures 1 and 3. The evalua-
tion data for the visual identification task consists of short video sequences taken
from the database. The recording conditions are uncontrolled and lead to low res-
olution faces ranging between 10 to 50 pixels resolution, depending on the camera
view and the position of the presenter/participant. The presenter to be recognized
moves around the projection screen without facing the cameras. Shadows and the
beam of the projector result in largely varying face illumination conditions. There
are 26 subjects in the database. Two different training and four different testing
durations are used in the experiments as presented in Table 1. The training sets
contain one sequence for each subject, whereas the number of sequences for each
subject in the testing set is varying. Identity estimates are provided at the end of
each test segment using the available video data. In addition frame-based recog-
nition — where an identity estimate is provided for every single frame — is also
performed and the corresponding results are also presented.

In the database, eye center labels are available for every 200 ms. We only used
the frames where both of the eyes are visible and are labelled at the same time. In
total we processed 26494 images for the experiments, where 8689 of them belong
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Table 1. Duration of Training and Testing Segments

Train/Test ID Segment duration (sec) No. of segments

Train A 15 26

Train B 30 26

Test 1 1 613

Test 2 5 411

Test 3 10 289

Test 4 20 178

Table 2. False Identification Results of the Baseline System

A1 A5 A10 A20 B1 B5 B10 B20

Frame-based 50.1 50.9 50.7 50.4 43.5 43.6 43.7 43.7

Video-based 35.1 25.9 24.9 19.3 32.3 22.3 22.1 17.1

to the training set and the remaining 17805 belong to the testing set. The face
images are aligned according to the labelled eye-center coordinates and scaled to
64 × 64 pixels resolution. The aligned images are then divided into 8 × 8 pixels
resolution non-overlapping blocks making 64 local image blocks. From each image
block five-dimensional DCT-based feature vectors are extracted and they are con-
catenated to construct the final 320-dimensional feature vector. The classification
is performed using a nearest neighbor classifier. The L1 norm is selected as the dis-
tance metric, since it has been observed that it consistently gives the best correct
recognition rates when DCT-based feature vectors are used. The distance values
are converted to the matching scores and then the normalized matching scores are
combined in order to provide the identity estimate. The identity candidate that
has the highest score is assigned as the identity of the person.

The baseline results of both the frame-based and video-based identification
are presented in Table 2. In this experiment, all the camera views are compared
with each other and the cameras are weighted equally. No frame weighting is per-
formed and no additional samples are used. Each column shows the results for a
different training-testing duration combination. The letter indicates whether the
training is from set A or B which corresponds to 15 and 30 second training dura-
tions, respectively. The number indicates the duration of the testing segment in
seconds. For frame-based identification all the frames in the training-testing du-
ration combination are used. For example in the combination ‘A5’, all the frames
in the Train A set and all the frames in 5 seconds duration testing segments are
used. Two main observations can be derived from the table. The first one is that
using the video data improves the results significantly compared to the single
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frame classification and the second one is that as the duration of training or
testing increases the false identification rate decreases.

In the following experiments the baseline parameters — comparing all camera
views with each other, no camera weighting, no frame weighting, no additional
samples — will be kept and whenever a parameter is changed it will be indicated
in the section.

4.1 Comparison of the Well-Known Face Recognition Algorithms

In the first part of the experiments, well-known face recognition algorithms have
been tested on the smart room data. The experiments are conducted frame-based.
That is, an identity estimate is provided for each frame. We used all the frames
from the Train B set for training and all the frames in the 20 second segments for
testing. We have compared our local appearance-based face recognition (LAFR)
algorithm with Eigenfaces [13], [14], linear discriminant analysis (LDA) [15] and
Bayesian face recognition [16] algorithms. In the Eigenfaces and Bayesian face
recognition algorithms we kept the first 320 eigenvectors, in order to have the same
dimensional feature vector that we used for the LAFR approach. For Bayesian face
recognition we used 1000 intra-personal and extra-personal samples. For LDA, we
used the LDA+PCA algorithm provided in the CSU face identification evaluation
system [17]. This version of LDA uses a soft distance measure proposed by Zhao
et al. [15]. We both used the L1 and MAHCOS [14] distance metrics in the Eigen-
faces algorithm. The false identification rates are given in Table 3. As can be seen
the local appearance-based face recognition approach outperforms the other well-
known face recognition algorithms. The most interesting result that can be ob-
served in this table is the very high false identification rate obtained by Bayesian
face recognition which has been known to be one of the best performing algorithms
in the FERET evaluations [18] and which has inspired many other algorithms that
utilize intra-personal and extra-personal variations. The main reason for the bad
performance on the smart room database is the multiple sources of variations that
exist in the database. Varying pose and illumination changes, registration errors
and low resolution make the intra-personal and extra-personal variations almost
identical, therefore the approach loses its discriminative capability.

Table 3. Performance Comparison of Well-known Face Recognition Algorithms

Recognizer FI rate (%)

LAFR 43.6

Eigenfaces L1 48.6

Eigenfaces MAHCOS 59.5

LDA 49.6

Bayesian 87.4
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Table 4. False Identification Results of Camera-wise Classification

Recognizer FI rate (%)

LAFR 37.8

PCA L1 45.8

PCA MAHCOS 60.8

Fisherfaces 46.5

Bayesian 82.5

Table 5. False Identification Results of Camera-wise and All Camera Classification for
LAFR

A1 A5 A10 A20 B1 B5 B10 B20

All cameras 50.1 50.9 50.7 50.4 43.5 43.6 43.7 43.7

Camera-wise 46.7 46.9 46.7 46.4 39.7 38.1 38.2 37.8

4.2 Camera-Wise vs. All Camera Classification

In the second part of the experiments, we compared camera-wise and all cam-
era classification. In camera-wise classification, each camera-view is handled sep-
arately. That is, the testing image acquired by a camera is only compared with the
training images acquired at each site by the camera with the same label. For exam-
ple, if the testing image was acquired by a camera with label 1, we only compare it
with training images also acquired by a camera with label 1. On the other hand, in
all camera classification the testing image acquired by a camera is compared with
the training images acquired by all the cameras. Camera-wise classification has
many advantages. First of all, it speeds up the system significantly. That is, if we
have N images from each camera for training, and if we have R images from each
camera for testing, and if we have C cameras that do recording, (C · N) · (C · R)
similarity calculations are performed between all the training and testing images.
However, when we do camera-wise image comparison, then we only need to do
C · (N ·R) comparisons between the training and testing images. Apparently, this
reduces the amount of required computation by 1/C. In addition to the improve-
ment in the system’s speed, it also provides a kind of view-based approach that
separates the comparison of different views, which was shown to perform better
than doing matching between all the face images without taking into considera-
tion their view angles [10].

Table 4 shows the false identification results of the well-known face recognition
algorithms. Again, all the frames from the Train B set and all the frames in the 20
second segments are used for training and testing, respectively. This time camera-
wise classification is done instead of comparing all the camera views with each
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Table 6. Effect of Camera Weighting

A1 A5 A10 A20 B1 B5 B10 B20

Video-based 34.4 25.1 22.5 19.3 31.3 22.3 21.1 15.9

other. Compared to the results in Table 3, it can be noticed that the results have
been improved for each recognizer except PCA MAHCOS.

In Table 5, camera-wise and all camera classification results are presented for the
LAFR algorithm for different training-testing duration combinations. Both of the
classifications are performed frame-based. As can be seen at each training-testing
duration combination the results improved with camera-wise classification.

4.3 Camera Weighting

In the third part of the experiments, the effect of camera weighting is analyzed.
The camera weighting is performed with respect to the distance between the eyes.
The higher inter-eye distance implies either a high resolution face image or a lower
resolution face image with a close to frontal pose. On the other hand, a small inter-
eye distance implies either low resolution face image or a higher resolution face
image with a close to profile head pose. Since we would like to weight the cameras
that have better view of the subject more and since higher resolution or close to
frontal face images are more desirable for face recognition, we did the weighting
by taking into consideration the inter-eye distance. We put more weights to the
camera views with high inter-eye distances, by using weights proportional to the
inter-eye distance. The obtained results can be seen in Table 6. Compared to the
results at the second row of Table 2 a slight decrease in the false identification
rates can be observed.

4.4 Additional Samples

In the fourth part of the experiments, we analyze the contribution of additional
training sample generation to the face recognition performance on the smart room
data. Note that, even with manual labelling, due to the low resolution of the face
images, there can be slight errors in the eye center coordinates. To be able to han-
dle registration errors, we generate additional registered samples from the man-
ually labelled training images. In order to do this, we move the left and right eye
center labels in their 4-neighborhood, (x + 1, y), (x − 1, y), (x, y − 1), (x, y + 1).
This gives 5 locations for each eye and 25 combinations of eye positions (includ-
ing the original eye coordinates). The face image is then registratered using each
of these 25 eye coordinates. This way, we generated 24 additional training sam-
ples per original training sample. Table 7 shows the results. Both the frame-based
and video-based results improved significantly, around 10% absolute decrease is
achieved in the false identification rates.

24 additional training samples implies 24 times more processing time that must
be spent in a nearest neighbor classification scheme which is not desirable. To
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Table 7. Effect of Using Additional Samples

A1 A5 A10 A20 B1 B5 B10 B20

Frame-based 38.7 39.0 38.8 38.3 31.9 32.1 32.1 31.8

Video-based 28.2 17.5 17.2 11.9 22.8 13.2 11.9 9.1

Table 8. Effect of Using Additional Samples with Clustering

A1 A5 A10 A20 B1 B5 B10 B20

Frame-based 40.5 41.9 41.9 41.7 35.0 34.3 34.2 34.1

Video-based 25.3 15.7 17.9 13.6 20.7 12.2 12.6 9.1

reduce the number of training samples we used k-means clustering. We chose k
to be the number of original samples and used the resulting cluster centers as rep-
resentatives. This way the processing time for classifying new images remains the
same. The resulting false identification rates are shown in Table 8. The results are
very close to the ones that were obtained without clustering. Even, at some cases
the false identification rates decrease. These indicate that there is no need to sacri-
fice from the processing time in order to obtain better results using the additional
samples.

4.5 Frame Weighting

In the fifth part of the experiments, we investigated the effect of frame weighting.
It has been observed that the distance between the closest and the second closest
training samples is generally smaller in the case of a false classification than in the
case of a correct classification [19]. It has been found that the distribution of these
distances resembles an exponential distribution:

ε(x; λ) = 0.1λe−λx with λ = 0.05 (2)

The weights are then computed as the cumulative distribution function:

E(x; λ) = 1 − e−λx (3)

Note that this distribution is extracted completely on a different database and
is not specific to the mentioned smart room scenario [19]. We weighted each frame
using this formula. The results are given in Table 9. Again an improvement over
the baseline system is achieved.

4.6 Combining All the Parameters

In the last experiment, we combined all the parameters we have analyzed so
far. We used additional samples with clustering, camera weighting and frame
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Table 9. Effect of Frame Weighting

A1 A5 A10 A20 B1 B5 B10 B20

Video-based 34.9 25.4 22.1 17.6 31.5 19.3 18.3 14.8

Table 10. Effect of Combining all the Parameters

A1 A5 A10 A20 B1 B5 B10 B20

Video-based 26.3 17.0 16.1 11.9 21.5 12.9 11.2 9.1

weighting for this experiment. Interestingly, the improvements observed in the
previous experiments do not sum up in the combined experiment. We noticed that
the largest impact comes from using additional samples with clustering.

5 Conclusions

In this paper we provided a detailed analysis of face recognition in smart rooms.
We first compared the well-known face recognition algorithms in order to observe
how they perform on the images collected under such environments. We found
the local appearance-based face recognition algorithm to be superior to the other
well-known face recognition algorithms. We also observed that the Bayesian face
recognition approach, which is based on intra- and extra-personal variations, does
not work well on this kind of uncontrolled data. Afterwards, we investigated two
typical aspects of doing face recognition in a smart room. The first one is utilizing
the video data captured from multiple fixed cameras located in the room. The ob-
tained results show that benefiting from video data provided by multiple cameras
decreases the false identification rates significantly compared to the frame-based
results. The second aspect is handling possible registration errors due to the low
resolution of the aquired face images. We generated additional registered samples
from the manually labelled training images by moving the manual eye label loca-
tions in the neighborhood and did registration with respect to the newly obtained
eye coordinate pairs. We also clustered the newly generated additional samples in
order to have the same number of representative training samples as we had orig-
inal training samples. In both cases — without and with clustering — the false
identification rates decreased significantly, which indicates that registration er-
rors are one of the most important problems in low resolution face recognition. In
addition, we also analyzed the effect of camera and frame weighting. Camera and
frame weighting have been found to improve the performance further.
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Abstract. We describe a method for recovering 3D human body pose
from silhouettes. Our model is based on learning a latent space using the
Gaussian Process Latent Variable Model (GP-LVM) [1] encapsulating
both pose and silhouette features Our method is generative, this allows
us to model the ambiguities of a silhouette representation in a principled
way. We learn a dynamical model over the latent space which allows us
to disambiguate between ambiguous silhouettes by temporal consistency.
The model has only two free parameters and has several advantages over
both regression approaches and other generative methods. In addition
to the application shown in this paper the suggested model is easily
extended to multiple observation spaces without constraints on type.

1 Introduction

We consider the problem of estimating 3D articulated human pose from monoc-
ular silhouettes. Silhouettes are commonly used for pose estimation [2,3,4,5,6]
as they contain strong cues for pose while at the same time being invariant to
texture and lighting. Pose estimation from silhouettes is difficult because of in-
herent ambiguities leading to a one to many mapping from silhouette to pose.
These ambiguities can be split into two types, (i) mis-labeling or limb flips and
(ii) out of plane rotations. The first type appears for in plane rotations when lack
of occlusion cues makes it hard to differentiate between limbs. The out-of-plane
ambiguities appear when the subject is facing the view plane: the perspective
distortions do not give strong enough cues to disambiguate limbs position out-
of-plane. Algorithms with silhouette inputs need to handle these ambiguities.

There are two lines of work on pose estimation from silhouettes, (i) methods
modeling the silhouette as a generative process from pose [4,6,7], (ii) methods
based on regression from image observations to pose [2,5,8,9]. Generative meth-
ods model the space of silhouettes as a function of pose. This will correctly reflect
the structure of the problem as each silhouette could have been generated by
several different poses but each pose can only generate one single silhouette. The
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problem arises when trying to infer pose from silhouette as, due to the multi-
modality no inverse functional mapping from silhouette to pose exists. Finding
each mode in pose space for a given silhouette is often very complicated due to
the high-dimensionality of the pose space, even approximative methods like par-
ticle filters will be very expensive as a very large number of particles are needed
to explore the high-dimensional pose space.

Regression based techniques try to model the pose space as a function of
silhouettes. However due to the multi-modality no such functional exists. To
overcome this problem it has been suggested to divide the silhouette space into
subspaces for which functionals exist [2,5]. The pose space can then be described
as a mixture of these single regressors. The structure of such a mixture has
to reflect the multi-modality such that a one-to-one mapping exist between
silhouette and pose for each subspace. In [2] the mixture centers region of support
are decided by clustering in pose space. This is based on the assumption that
ambiguities will occur between poses that have a significantly different joint
angle configuration.

In [5] clustering is initially done in silhouette feature space then each cluster
is split into several sub-clusters based on their corresponding poses. A clustering
approach will not resolve all the ambiguities as it is based on the assumption that
ambiguous silhouettes are “clearly” separated in pose space. This is only true
for a small subset of ambiguities as especially the out-of-plane type occurs for
continuous ranges in pose space. The final number of regressors will need to be
decided based on some heuristic assumption about the occurrence of ambiguities
or an error measure. There is a trade-off between generalization and training
error as the minimal error would be given if each pose were to be represented by
a separate regressor, but this would remove all generalizing capabilities of the
model.

In this paper we take a learning based approach where we model both silhou-
ette observations, joint angles and their dynamics as generative models from a
shared low dimensional latent representations using the GP-LVM [1]. In line with
other work on pose estimation [2,3,4,5,6] we have chosen to represent each image
by its silhouette. As in [2,5] each silhouette is represented using shape context
histograms [10]. We subsample each contour with one pixel spacing, acquiring
about 100 − 150 histograms for each image. To reduced the dimensionality of
the descriptor and remove the the the effects of ordering we vector quantize the
histograms using K-means clustering as described in [11], resulting in a 100D
silhouette descriptor.

As described above a generative processwill correctly handle themulti-modality
between silhouette and pose. As we are learning a low-dimensional representation
of pose we are not forced to fall-back on approximative methods for solving the
inverse of this generative mapping. Our latent representation reflects the dynam-
ics of of the data and can therefore predict poses over time in simple manner. The
model requires no manual initialization when predicting sequential data but auto-
matically initializes from training data.
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2 Gaussian Processes

Gaussian Processes (GP) [12] are generalizations of Gaussian distributions de-
fined over infinite index sets. Thereby a GP can be used to specify distribution
over functions. It is completely defined by its mean function μ(xi), which is often
taken to be zero, and its covariance function k(xi,xj). The covariance function k
characterizes the nature of the functions that can be sampled from the process.
One widely used covariance function is

k(xi,xj) = θ1e
− θ2

2 ||xi−xj||2 + θ3 + β−1δij , (1)

where the parameters are given by Φ = {θ1, θ2, θ3, β} and δij is Kronecker’s
delta function. This covariance function combines an RBF function, a bias and
a white-noise term. The parameters Φ of the covariance function k will be referred
to as the hyper-parameters of the GP.

2.1 Prediction

By definition of a GP any finite number of variables specified by the process will
have a joint Gaussian distribution [12]. For regression yi = f(xi) + ε, with noise
ε ∼ N(0, β−1), where yi ∈ � and xi ∈ �q placing a GP prior with zero mean
and covariance function k(xi, xj)1 over f , leads to the joint distribution,

[
y
y∗

]
∼ N

(
0,

[
K K∗
KT∗ k(x∗,x∗)

])
(2)

of a set of observed data {xi, yi}N
i=1 and an unseen point x∗, where Kij =

k(xi,xj). Conditioning on the observed data leads to a posterior distribution
over functions. From this posterior we obtain the predictive equations of a GP
for an unseen point x∗,

y∗ = k(x∗,X)K−1Y (3)
σ2
∗ = k(x∗,x∗) − k(x∗,X)T K−1k(x∗,X), (4)

where X = [x1, . . . ,xN ]T , Y = [y1, . . . , yN ]T , y∗ is the mean prediction and σ2∗
is the variance.

2.2 GP Training

By maximizing the marginal likelihood over functions f ,

p(Y|X, Φ) =
∫

p(Y|f,X, Φ)p(f |X, Φ)df (5)

p(f |X, Φ) = N(0,K),

1 Including a white-noise term with variance β−1.
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the hyper-parameters Φ of the GP can be learned from the observed data. This
is referred to as training in the GP framework. It might seem undesirable to opti-
mize over the hyper-parameters as the model might over-fit the data2 Inspection
of the logarithm of equation (5),

log p(Y|X) = −1
2
tr

(
YT K−1Y

)

︸ ︷︷ ︸
data−fit

− 1
2
log |K|

︸ ︷︷ ︸
complexity

−N

2
log 2π, (6)

shows two “competing terms”, the data-fit and the complexity term. The com-
plexity term measures and penalizes the complexity of the model, while the
data-fit term measures how well the model fits the data. This “competition”
encourages the GP model not to over-fit the data.

3 GP-LVM

Lawrence [13] proposed an algorithm for dimensionality reduction using Gaus-
sian Processes called the Gaussian Process Latent Variable Model (GP-LVM).
The GP-LVM is a generative model where each observed data point, yi ∈ �D,
is generated through a noisy process from a latent variable xi ∈ �q,

yi = f(xi) + ε, (7)

where ε ∼ N(0, β−1I). Placing a zero mean GP-prior on the generative function
f the marginal likelihood P (Y|X, Φ) can be formulated by integration over f ,

P (Y|X, Φ) =
D∏

j=1

1
(2π)

N
2 |K| 1

2
e−

1
2yT

:,jK
−1y:,j , (8)

where y:,j is the jth column from the data matrix, Y. The GP-LVM maximizes
the marginal likelihood (8) with respect to both the latent points X and the
hyper-parameters Φ of the covariance function,

{X̂, Φ̂} = argmaxX,ΦP (Y|X, Φ). (9)

In general3 there is no closed form solution for (9) and we must turn to gradient
based optimization to make progress. The only parameter of the GP-LVM that
can not be found through maximum likelihood is the dimensionality of the latent
space, q, which must be set by hand.

2 By setting the noise variance β−1 to zero the function f will pass exactly through
the observed data Y.

3 An exception is when the linear kernel is used, in which case the optimization be-
comes an eigenvalue problem [1].
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3.1 Back Constrained GP-LVM

Using a smooth covariance function the GP-LVM will specify a smooth mapping
from the latent space X to the observation space Y, this means that points
close in the latent space will be close in the observed space. Having a smooth
generative mapping does not imply that an inverse functional mapping exists.

Recently Lawrence and Quiñonero Candela [14] proposed an extension to
the GP-LVM where the model is constrained by representing each latent point
as a smooth parametric mapping from its corresponding observed data point,
xi = g(yi,W), where W is the mapping parameter set. This constrains points
that are close in the observed space to also be close in the latent space. The
mapping from observed data Y to X will be referred to as back-constraint.
Including a back-constraint in the GP-LVM model changes the maximization
in equation (9) from optimization with respect to the latent variables X to
optimizing the parameters of the back-constraining mapping,

{Ŵ, Φ̂} = argmaxW,ΦP (Y|W, Φ). (10)

3.2 GP Dynamics

For embedding sequential data Wang et. al. [15] proposed an extension to the
GP-LVM to find a latent space that would reflect the ordering of the observed
data. This is done by specifying a predictive function over the sequence in latent
space,

xt = h(xt−1) + εdyn, (11)

where εdyn ∼ N(0, β−1
dynI). A GP prior can then be placed over the function

h(x). Marginalizing this mapping results in a distribution over the latent points
which, through combination with the marginalized likelihood for the GP-LVM,
specifies a new objective function,

{X̂, Φ̂Y , Φ̂dyn} = argmaxX,ΦY ,Φdyn

P (Y|X, ΦY )P (X|Φdyn). (12)

4 GP-LVM for Pose Estimation

The aim of our model is to learn a shared latent representation X = [x1, . . . ,xN ]T

that relates corresponding pairs of feature Y = [y1, . . . ,yN ]T and pose Z =
[z1, . . . , zN ]T . In [16] a shared latent structure between two joint angle spaces,
one corresponding to a humanoid robot and the other corresponding to a human is
learned. This is done by modifying the GP-LVM to learn separate sets of Gaussian
Processes to each of the different observation spaces from a shared latent space.
The latent representation is found by maximizing the joint marginal likelihood of
the two observation spaces,

P (Y,Z|X, Φs) = P (Y|X, ΦY )P (Z|X, ΦZ), (13)
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where Φs = {ΦY , ΦZ}. We want to learn a latent structure that preserves local
distances from the pose space. This can be achieved by incorporating a back-
constraint from the pose space onto the latent space by representing the latent
points as a function of the pose. Incorporating a back-constraint from pose im-
plies we are trying to enforce a one-to-one mapping between the pose space and
the latent space. This is desirable as it will force the mapping from latent to fea-
ture to be many-to-one which means that we have contained the multi-modality
of the system to this mapping.

To back-constrain the latent space, we represent the latent points by a regres-
sion over a kernel induced feature space that allows for non-linearities,

xi =
N∑

j=1

wjφ(zi, zj) (14)

φ(zi, zj) = e−
γ
2 (zi−zj)T (zi−zj) (15)

This leads to a modified objectivewhere the positions of the latent variables are op-
timized indirectly by maximizing P (Y,Z|W, ΦY , ΦZ) = P (Y|W, ΦY )P (Z|W, ΦZ)

with respect to the parameters of the back-constraint. The latent representation
is shared by the feature space and the pose space. By back-constraining the pose
space we are encouraging the mapping between the latent space and pose space
to be one-to-one, thereby forcing the GP-LVM from latent space to silhouette fea-
tures to be many-to-one to reflect the ambiguities in the silhouette features.

4.1 Dynamical Model

Many of the pose ambiguities from our silhouette representation can be re-
solved by considering sequential data. Including a model that can predict poses
over time allows us to resolve ambiguous silhouettes by temporal consistency.
However, by learning a latent representation we can do even better. We can
incorporate the dynamic model when learning the latent representation, forc-
ing the latent representation to respect the data’s dynamics. This can be done
by specifying a GP over the latent space as in [15], incorporating this within
our back-constrained, shared latent space representation leads to the following
objective,

P (Y,Z,W|Φ) = P (Y,Z|W, Φs)P (W|Φdyn),

where Φ = {Φs, Φdyn}. Sequences of pose usually form locally smooth but glob-
ally complex trajectories through joint angle space. This makes it difficult to fit
a dynamic model when pose is represented as joint angles. Learning a dynamical
model jointly with the latent representation is beneficial as the non-linear map-
ping from latent space to pose space allows for a significantly different structure
for the latent representation and the joint angle representation. We use this prop-
erty to smoothly4 arrange the latent representation according to the dynamics
4 Due to the smooth covariance function in the dynamic GP.
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Fig. 1. Single Image Pose Estimation: Input silhouette followed by output poses asso-
ciated with modes on the latent space ordered according to decreasing likelihood

of the data. Along with the dynamics our model also contains a back-constraint.
The back-constraint will encourage that the local smoothness of the joint angle
trajectories is preserved. Our experiments show that the structure of the latent
space changes significantly when incorporating the dynamics, this difference is
evidence of the complex nature of trajectories through joint angle space.

4.2 Model Summary

Training of the model implies that we are finding a shared latent representation
X of both the observation spaces Y (the silhouette features) and Z (the pose
angles), learning two sets of GP regressors from the latent space, X, to recon-
struct each of the observation spaces. Additionally the latent space incorporates
a set of GPs which give temporal predictions. We are also learning a parametric
mapping from the pose space, Z, to the latent space, X, thereby enforcing the
latent space to preserve the local similarities of the pose space. All the remaining
parameters of the model, except two, are found through maximum likelihood.
The two remaining parameters are: (i) the width γ of the kernel that specifies
the back-constraining mapping (15). This parameter was estimated by viewing
the scatter matrix of the kernel response to the pose training data (in all our
experiments it is set γ = 10−3). (ii) The dimensionality of the latent space q
which we set to 4 for all our experiments. All other parameters of the model
(i.e. the parameters of each of the three covariance functions, the parameters
of the back-constraint and the coordinates of latent representation) are learned
from training data.

5 Pose Inference

Given a trained model which jointly represents the pose angles, Z, and the
silhouette features, Y, in terms of a shared sub-space, X, we wish to infer the
most likely sequence of pose angles given a set of silhouette features. We will
first describe inference for a single frame and then show how inference is done
for a sequence of frames.
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5.1 Single Image Pose Estimation

Inference in this model is a two stage process. In the first stage the position
on the latent space that is most likely to have generated the observed features
is found. This is done by maximizing the predictive likelihood for the GP that
maps the latent space to the given silhouette features,

x̂ = argmaxx∗p(y∗|x∗,Y,X, ΦY ). (16)

Having forced the multi modality to be handled by the GP from latent to feature
we expect (16) to have several maxima for an ambiguous silhouette. Equation
(16) needs to be maximized using gradient based methods which require initial-
ization. For each initialization for x∗ we will find one (not necessarily unique)
maximum. To recover multiple solutions we need multiple initializations. We
chose the initializations of x∗ from the latent points, X, that correspond to the
training data, choosing the 20 most likely points to have generated y∗.

As explained in the previous section we back-constrain the latent space with
a smooth mapping from pose space with the aim of enforcing a one-to-one cor-
respondence between the latent space and the pose space. This means that given
a latent representation the pose can simply be found by mapping each of the
optimized latent points to pose space using the mean prediction from each latent
point (3) of the GP as the most likely pose for each of the modes,

ẑ = k(x̂,X)T K−1Z, (17)

and accounting for the width of the distribution around each mode using the
variance (4).

5.2 Sequence Estimation

A single feature descriptor is likely to correspond to several different poses, how-
ever a sequence of feature descriptors are less likely to be ambiguous. Learning
a GP to predict latent points over time we can formulate the joint likelihood for
a sequence of features and their latent coordinates using the dynamical model.
We can maximize this joint likelihood to find the most likely latent coordinates
for the observed sequence of silhouette features.

X̂ = argmaxX∗p(Y∗,X∗|Y,X, ΦY , Φdyn) (18)

Having found the corresponding latent points the most likely poses can, as in
the case of the single frame estimation, be found through the mean prediction
of the GP from the latent space to the pose space,

Ẑ = k(X̂,X)T K−1Z (19)

5.3 Sequence Initialization

As with the initialization for a single image we want to initialize each frames la-
tent point with a point from the latent space from the training data X. The most
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likely sequence through the training data for an unseen sequence Y∗ can be found
by interpreting the sequence as a hidden Markov model (HMM) where the latent
states of the HMM correspond to the training points. The likelihood for each ob-
servation is specified by the GP point likelihood (16) associated with each each
latent point, and the transitions are given by the dynamical GP that predicts
over time in the latent space. The most probable path Xinit = argmaxx(1),...x(n)

p(x(1), . . .x(n)|y(1)
∗ , . . .y(n)

∗ ) through this lattice can be found using the Viterbi
algorithm [17]. The optimization of the sequence objective in (18) can then be
initialized with Xinit.

6 Results

We will consider the data presented in [2]. This dataset contains 1927 training
poses and 418 poses for testing from human motion capture data. Each pose is
parametrized by a 54 dimensional joint vector. From each pose vector an image
has been generated using the computer graphic package Poser from Curious
Labs.

6.1 Single Image

In Figure 1 results for a single pose estimate are shown. Each estimate is initial-
ized using the 20 most likely points from the training data. The top row shows
an ambiguous silhouette of the mis-labeling or limp flip type, followed by the
model estimates sorted according to likelihood. We expect a mis-labeling ambi-
guity to correspond to a discrete set of poses with significantly different joint
angle configurations. Only the three first estimates have a good correspondence
to the silhouette, corresponding to significantly different joint configurations of
both legs and arms as expected.

The bottom row show a silhouette corresponding to an out-of-plane ambi-
guity. This silhouette contains very little information about the position of the
limbs moving out-of-plane, we can see that this is well reflected by the model,
suggesting several different configuration of the legs and the arms. The least
likely of the shown estimates is a heading ambiguity which is also a plausible
estimate to the silhouette.

6.2 Sequence

In Figure 2 every 20th frame for a circular walk sequence is shown. Our model
does well for most of the frames but misestimates one stride in a turn. This
bad estimate is due to lack of training data, each turn in the training data from
this position is taken with the opposite leg compared to the test data. Therefore
the dynamical model does not agree with the observations and the estimated
pose is a suboptimal minimum. The estimate waits until the stride with the
“unexpected” leg is finished and then latches on in the correct stride. Outside
this turn our model correctly estimates the true pose.
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Fig. 2. Every 20th frame from a circular walk sequence, Top Row: Input Silhouette,
Middle Row: Model Pose Estimate, Bottom Row: Ground Truth. The box indicates
bad estimates by our model.

Fig. 3. Angle error: The image on the left is the true pose, the middle image has an
angle error of 1.7◦, the image on the right has an angle error of 4.1◦. An angle error
higher up in the joint-hierarchy will effect the positions for all joints further down. As
the errors for the middle image are higher up in the hierarchy this will effect each limb
connected further down the chain from this joint thereby resulting in a significantly
different limp positions.

6.3 Quantitative Results

Results on Human Pose estimation are normally reported by the means square
error between the estimated pose and ground truth [2,18]. A mean square error
treats all dimension of the joint angle space with equal importance and do not
reflect the hierarchical structure of the human physiology, Figure 3. Table 1
shows mean RMS angle and joint position error for our model, a set of regression
algorithms and the mean pose in the training data over the test sequence. We
can see that our single estimate is worse than RVM regression. This is expected
as the multi-modal prediction in our model will either predict the correct pose
or we find an ambiguous pose in these cases a regression based methods would
predict the mean pose which will result in a smaller error. Neither angle or joint
position error can correctly reflect visual similarity for sequences as humans have
strong and complex priors with regards to motion.
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Table 1. Mean RMS Angle and Joint Position Error normalized by the height of the
model. Note that the only the GP-LVM Sequence method is using temporal information.

Angle Error Joint Position Error

Mean Training Pose 8.3◦ 37.3 · 10−2

Linear Regression 7.7◦ 33.5 · 10−2

RVM 5.9◦ 15.8 · 10−2

GP-LVM Single 6.5◦ 17.2 · 10−2

GP-LVM Sequence 5.3◦ 15.0 · 10−2

7 Discussion

The model presented in this paper learns a shared low-dimensional representa-
tion of a single observation space and a target domain. For the task of estimating
pose from silhouette the information in the observation space in not sufficient to
determine pose why we in this paper have used temporal consistency to disam-
biguate between multiple solutions. Another strategy is to incorporate additional
observation spaces that together will better represent the target domain. A com-
mon example for the application presented is to use information from additional
views, another example is combining information from both visual and audio
cues. This leads to the problem of how to “merge” the different observation
spaces into a single representation. In [8] features are extracted from multiple
views and concatenated into a larger feature vector from which pose is inferred.
In the presented model additional observations can simply be added and a shared
low-dimensional representation can be learned of all the observation spaces and
the target domain. An additional advantage with the model is that inference
can be done if any non-zero subset of the observations are given, presenting
additional observations will constrain the problem further.

8 Conclusion and Future Work

We have presented a method for human pose estimation from silhouettes using
Gaussian Process Latent Variable Models. Our model represent both image ob-
servations and pose parameters in a shared latent space. The structure of the
latent space is constrained to produce smooth trajectories over time by incor-
porating a GP to predict over the latent space. The model only has two free
parameters and requires no manual initialization.

In future work we would like to extend the model to learn two separate sets
of dynamics, one dynamic for the human relative motion (e.g. stride) and one
model for the motion of the root of the body. This should hopefully solve the
problems in our estimation and also reduced the amount of training data needed.
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Abstract. In conversational speech, irregularities in the speech such
as overlaps and disruptions make it difficult to decide what is a sen-
tence. Thus, despite very precise guidelines on how to label conversa-
tional speech with dialog acts (DA), labeling inconsistencies are likely
to appear. In this work, we present various methods to detect labeling
inconsistencies in the ICSI meeting corpus. We show that by automati-
cally detecting and removing the inconsistent examples from the training
data, we significantly improve the sentence segmentation accuracy. We
then manually analyze 200 of noisy examples detected by the system
and observe that only 13% of them are labeling inconsitencies, while the
rest are errors done by the classifier. The errors naturally cluster into 5
main classes for each of which we give hints on how the system can be
improved to avoid these mistakes.

Keywords: Automatic relabeling, error correction, boosting, sentence
segmentation, noisy data.

1 Introduction

Sentence segmentation from speech is part of a process that aims at enrich-
ing the unstructured stream of words output by automatic speech recognizers
(ASR). The role of sentence segmentation is to find the sentence units in the
stream of words output by the ASR. It is of particular importance for speech
related applications, as most of the further processing steps, such as parsing,
machine translation, information extraction, assume the presence of sentence
boundaries [1,2].

Sentence segmentation can be seen as a binary classification problem, in which
every word boundary has to be labeled as a sentence boundary or as a non-
sentence boundary. In the usual learning task, when provided with data, one has
to manually label a consequent amount of them to perform automatic learning.
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Speaker 1: So is this OK with you? (question)
Speaker 2: Yes (statement) but I do- (disruption)
Speaker 1: Come on (floor grabber)

I want this very much (statement)
Speaker 2: Uh huh (backchannel)
Speaker 1: And I want ... (statement)

Fig. 1. Example of a dialog along with dialog acts

but the phrase is not part of the sentence. and neither is

the sentence part of the phrase.

Fig. 2. Example of a dialog along with dialog acts

In this work, we focus on sentence segmentation for conversational speech from
the ICSI meeting corpus, which has been manually labeled with 5 dialog acts:
statement, question, backchannel, floor-grabber/holder, incomplete. Backchan-
nels are short phrases such as yeah or uh huh to indicate that the listener is
actually following the speaker. Floor grabbers indicate that the person wants
to start talking; similarly floor holders indicate that the speaker has not yet
finished. Disruptions (also called incompletes) stand for statements that remain
uncompleted for some reason. Figure 1 shows an example of a dialog along with
dialog acts.

For the sentence segmentation, we merge all DAs into one class, the “sentence”
class, and the goal of the classification is to find the correct locations for the be-
ginning and end of each sentence unit. It is therefore crucial that the DAs have
been consistently labeled beforehand. Consistent labeling is however not always
guaranteed, since labels are attributed by humans who make mistakes because
of the difficulty of DAs labeling in conversational speech. Indeed, conversational
speech comprises incomplete and gramatically incorrect sentences which make
some candidate boundaries likely to be labeled as sentence boundary as well as
non-sentence boundary1. Therefore, additionally to the inter-labeler inconsisten-
cies due to a possible different interpretation among the labelers, the complexity
of the task leads to inconsistencies. Figure 2 shows a case where the labeler has
labeled the word boundary after the word sentence as the end of a statement,
but another labeler might as well have not inserted anything and just considered
the whole example as one statement. Such inconsistencies in the labeling might
confuse the classifier and decrease the sentence segmentation accuracy.

In this paper, we study four approaches to automatically detect these ambigu-
ous or wrongly labeled examples. The first approach is based on a committee
decision, the second one is based on the confidence attributed by the classifier
to each instance, and the two last methods use the weights and edges measures
of the learning algorithm used, AdaBoost. We show that the sentence segmen-

1 More details about the labeling can be found in the guidelines that were given to
the labelers in [3].
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tation accuracy significantly increases when we remove the noisy examples from
the training data, whereas relabeling them does not increase the performance
much.

The rest of the paper is structured as follows: in the next section, we describe
Boosting, the learning algorithm that we used and review the work done in
automatic noise detection. In Section 3, we describe our four approaches to
detect noisy examples. The results are presented in Section 4, and discussed in
Section 5.

2 The Boosting Algorithm and Related Work

To perform the binary classification task of sentence segmentation, we use the
AdaBoost.MH2 algorithm introduced by Schapire and Singer [4], since it has
been shown to be among the best classifiers for the sentence segmentation
task [5]. Boosting is an iterative procedure that builds a new weak learner ht

at each iteration. Every instance of the training data set is assigned a weight.
These weights are initialized uniformly and updated on each iteration so that the
algorithm focuses on the instances that were wrongly classified on the previous
iteration. At the end of the learning process, the weak learners used on each
iteration t are linearly combined to form the classification function:

f(x, l) =
T∑

t=1

αtht(x, l)

with αt the weight of the weak learner ht and T the number of iterations of the
algorithm, x the example to classify and l the label, with l ∈ L. The label l with
highest score f(x, l) is attributed to x. More details on Boosting can be found
in [6].

Noisy data has always been a problem in the field of statistical learning. Noise
can arise from various sources, such as imprecision or error in the measurement,
and labeling errors. Multiple approaches have been tried to identify the noisy
instances. A method based on a committee of classifier has been successfully
introduced for spoken language understanding in [7]. In [8], E. Eskin presents
a technique to detect anomalies and applies it to network intrusion detection.
The main idea is to consider two sets of data A and B with corresponding
distributions DA and DB, one for the regular instances (A) and one for the
anomalies (B). At the beginning, all instances belong to A. Each instance is then
removed from A and added to B and DA and DB are recomputed. The difference
between the log likelihood before and after the exclusion of the instance decides
if the instance should be moved to B or kept in A. This approach can be used
with any statistical classifier that gives an estimation of the distributions DA

and DB. Other approaches specific to Boosting have also been tried. In [9], the
authors suggest to use the weights over the instances at the end of the training
2 As is commonly done in the literature, we abusively use the term “Boosting” in this

paper to designate the AdaBoost.MH algorithm.
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in Boosting to detect the mislabeled instances in part-of-speech tagging. The
assumption is that instances that have been wrongly annotated are hard to
classify, and thus have a high weight at the end of the training phase. A similar
approach is used in [10], where the instances are selected according to their edge
value instead of their weight. A detailed presentation of the weight and edge
measures is provided in the next section. An interesting approach is presented
in [11], where the weights of the attributes as well as the weights of the instances
are used to detect the noisy data. The approach is evaluated on endowment
insurance records and to our knowledge has not been used on other test sets,
which makes it difficult to compare to other methods.

While all the methods introduced above use various measures of Boosting,
Oza slightly modifies the Boosting algorithm in order to make it more robust to
noise [12]. The main idea in this algorithm is to average the new distribution of
the instance weights with the distributions of the previous iterations. Averaging
the weights has a regularizing effect which leads to a highest training error bound,
but a better generalization error bound. Dealing with the noisy examples is thus
done implicitly by the classifier, while all other methods require a post-processing
of the noisy instances, such as removing them from the training set or relabeling
them.

3 Approach

In this section, we present four methods to detect the noisy examples in the
training set. Once the noisy examples have been detected, we can either remove
them from the training set or automatically relabel them. Relabeling is especially
trivial in the case of binary classification, since if an example does not belong to
the sentence boundary class, it belongs to the non-sentence boundary class, and
inversely.

In the following description, we assume a data set D of training instances,
with |D| = N . Each example xi in D is represented by a set of features and
belongs to a class yi ∈ Y that has been assigned by human labelers and to which
we refer as the true class. Y = {s, n} is the set of possible classes with s the
class of examples which are sentence boundaries and n the class of examples that
are non-sentence boundaries. The Boosting algorithm described in the previous
section is used to output a probability p(s|xi) for each example xi to belong to
the class s. If the p(s|xi) is larger or equal to a threshold T , xi is attributed
the class s, i.e. declared as a sentence boundary, otherwise it gets class n, i.e.
declared as a non-sentence boundary.

3.1 Committee-Based Method

The training set D is split into k mutually exclusive data sets dj of size N/k each.
A classifier cj is trained on each of the reduced data sets dj . The k classifiers cj

are then used to evaluate each example in D. Therefore, for each instance of the
original data set D, we now have k votes. An example xi is defined as noisy when
all k classifiers cj agree on a class y′

i, and y′
i is different from the true class yi.
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We describe 3 variants of this method. One of them is to exclude an example
xi if k′ classifiers agree on a class y′

i �= yi, where k′ < k. This is a less strong
excluding condition and is thus more likely to remove non-noisy examples. An-
other variant is to remove only the examples whose true class is n whereas the
k classifiers have agreed on class s (false positives). The motivation behind this
variant is that labelers are more likely to forget to label an instance as a sentence
boundary, while it truly is a sentence boundary, than to add sentence bound-
aries where there is no reason to have sentence boundaries. The last variant is
to use a variable threshold T . Optimizing the threshold for each of the k classi-
fier would however be computationally too expensive and we therefore only use
T ∈ {0.3, 0.5}.

3.2 Confidence-Based Method

The complete training set D is first used to train a classification model M1.
The model M1 is then used to estimate the class of each example xi in D. The
noisy examples are those that have a true class yi but are assigned a class y′

i by
the classification model M1, where yi �= y′

i and the probability p(y′
i|xi) assigned

to the class y′
i for example xi is larger than a threshold Z optimized on the

held-out set. In Section 4, we present 3 variants of the experiment: one where
all the detected noisy examples are excluded, and two where the false negatives
(resp. false positives) are relabeled. Note that the confidence-based method is a
special case of the committee-based method, where k = 1 and the true class in
the detecting phase is determined with an optimized threshold.

3.3 Boosting Weights Method

This method is based on the observations done in [9] and uses the weights at-
tributed by Boosting to each training instance. We use a simplified version (since
sentence segmentation has only two classes) of the original weight update func-
tion described in [4]:

Wt+1(i) =
Wt(i)exp(−ht(xi) · Y [i])

Zt
(1)

Zt =
N∑

i=1

Wt(i)exp(−ht(xi) · Y [i])

where Wt(i) is the weight of instance xi at iteration t, and

Y [i] =
{

+1, if yi = s
−1, if yi = n.

(2)

Thus, if the current rule ht classifies the example xi incorrectly, the next weight
Wt+1(i) will increase, otherwise it will decrease. To decide which examples are
noisy, we sort all examples according to their weight at the end of the training
and declare the top X examples as being noisy.
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The parameters are the number X of excluded examples, as well as the number
of iterations used to train the classifier. If we train for too many iterations, we
take the risk of having the examples that are noisy having their weights decreased
because the final rules created by Boosting after several iteration eventually
classify them correctly. On the other hand, if we train for too few iterations, the
weights of the noisy examples might not have had the chance to increase enough
compared to those of the regular examples.

3.4 Boosting Edges Method

The definition of edges has first been introduced by Breiman [13], and used to
detect noisy data in [10]. The edge value edgei of an instance xi at iteration t is
the total weight assigned to xi by all ht that misclassified xi up to iteration t:

edgei =
T∑

t=1

ht(xi)It(xi) (3)

It(xi) is the following indicator function, where [hm(xi)] is the class assigned by
hm to xi:

Im(xi) =
{

0, if [hm(xi)] = yi

1, if [hm(xi)] �= yi
(4)

Note that the edge values are always positive since the chosen class is by defini-
tion the one that has a positive weight in a two-class Boosting problem.

In [10], Wheway suggests to declare as noisy the 5% instances with highest
edge value after 10-20 iterations. She however does not evaluate her suggestion
and although we think this approach is reasonable, we will experimentally show
that the percentage of instances declared as noisy, as well as the number of
iterations after which the edge values are computed, are both parameters that
have to be optimized.

4 Experiments and Results

Data Sentence segmentation is performed on conversational speech, which comes
from the ICSI meeting corpus (MRDA) [14]. This corpus contains 73 meetings
which are grouped in three main types (according to the speakers, the conversa-
tions type, etc.). We use the same split of training, test and held-out set as speci-
fied in [15], i.e. 51 meetings for the training set, 11 meetings for the test set and 11
meetings for the held-out set. More details about the data are shown in Table 1.
We use the manual transcriptions of the meetings and feed the classifier with both
lexical and prosodic features, for a total of 34 features. The prosodic features are
various measures of the pitch, energy and pause duration across the boundary of
interest. The lexical features are unigrams, bigrams, and trigrams formed with the
words surrounding the word boundary of interest. More details on the features can
be found in [5].
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Table 1. Data characteristics of the MRDA corpus. Sizes and sets are given in number
of words.

Training set size (words) 538,956
Test set size 101,510
Held-out set size 110,851
Vocabulary size 11,034
Average utterance length 6.54

Metrics. To measure the performance of the sentence segmentation, we use
the F-measure and the NIST-SU error. The F-measure is the harmonic mean
of the recall and precision measures of the sentence boundaries hypothesized by
the classifier to the ones assigned by human labelers. The NIST-SU error rate is
the ratio of the number of wrong hypotheses made by the classifier to the number
of reference sentence boundaries. So if no boundaries are marked by sentence
segmentation, it is 100%, but it can exceed 100%; the maximum error rate is the
ratio of number of words to the number of correct boundaries.

4.1 Results

We now report the results for each of the methods introduced in Section 3. The
baseline was obtained by training the classifier on the entire training set and
evaluating the classification accuracy on the test set, with parameters optimized
on the held-out set. The baseling settings yielded a 81.7% F-Measure and a
35.6% NIST-SU error rate. For each of the methods described above, we present
results obtained by optimizing the parameters on the held-out set.

For the committee-based method, we tried values 8, 9 and 10 for k, values
0.3 and 0.5 for the Boosting threshold, and for each of the settings, we tried
to exclude only the noisy examples that the labelers labeled with class n. The
results of the 2 best settings on the held-out set for each value of k are shown
in Table 2.

For the high confidence disagreement method, the optimal value for the thresh-
old Z on the held-out set was 0.6. Table 3 shows the results when we excluded noisy
examples or relabeled a subset of them.

For the weights and the edges experiment, we trained Boosting for M iter-
ations, with M ∈ M = {10, 20, 50, 100, 200, 300, 400, 500, 1000} iterations. For
each M ∈ M iteration, we removed the X examples with the top weight (resp.
edge) score, with X ∈ [1000, 2000, ..., 10000], and report the results in Tables 4
and 5 for the number of excluded examples X that yielded the best result on
the held-out set. Note that when several examples had the same score and they
were at the border of the X top examples, we excluded all examples that had
the exact same value as the Xth example.

All presented methods outperformed the baseline with optimized parameters.
The overall improvement can look small, but an F-Measure above 81.94% and a
NIST error under 35.30% are both statistically significant improvements accord-
ing to a Z-test with 95% confidence range. The overall best performance was
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Table 2. Results for the committee-based method. The first column shows the number
of votes required to tag an example as noisy, the second shows the threshold that
distinguishes between the two classes n and s; the 3 last columns show the result for
the setting of the 3 first columns: number of examples excluded and accuracy according
to the F-Measure and the NIST error.

k Ths. # Noisy (% of total) F-Meas. NIST err.

Baseline 0 81.71 35.59

10 0.5 10,786 82.10 (2.0) 35.07

10 0.3 9,363 82.11 (1.7) 34.99

9 0.5 21,572 81.66 (4.0) 35.01

9 0.3 18,726 82.09 (3.5) 34.90

8 0.5 22,465 81.96 (4.2) 34.63

8 0.3 22,016 82.35 (4.1) 34.32

Table 3. Results for the confidence-based method. The first row shows the standard
case described in the text, while for the results in rows 2 and 3, only the examples with
true class s (resp. n) were kept, while examples from the other class were relabeled.

Processing # Noisy (% of total) F-Meas. NIST err.

Baseline 0 81.71 35.59

Exclude all noisy 22,951 (4.3) 82.00 34.6

Relabel false positive - 82.00 34.7

Relabel false negative - 82.10 34.7

Table 4. Results for the weights methods. The first column shows the number of
iterations after which the weight values are measured, the second column indicates
the number of examples tagged as noisy and the last two columns report the sentence
segmentation accuracy according to the F-Measure and the NIST error.

Iterations # Noisy (% of total) F-Meas. NIST err.

Baseline 0 81.71 35.59

10 1,000 81.34 (0.2) 35.48

20 1,000 81.82 (0.2) 35.45

50 1,000 81.66 (0.2) 35.66

100 6,000 81.76 (1.1) 35.27

200 6,000 81.94 (1.1) 35.24

300 7,000 81.74 (1.3) 35.15

400 8,000 81.95 (1.5) 35.02

500 8,000 81.97 (1.5) 34.87

1000 10,000 81.83 (1.9) 34.87

obtained by the committee-based method with k = 8 and improved the baseline
of 0.7% absolute for the F-Measure and 1.3% absolute for the NIST error. In
some settings, the F-Measure was lower than for the baseline, as opposed to the
NIST error which was always better than the baseline, which means that in any
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Table 5. Results for the edges methods. The first column shows the number of it-
erations after which the edge values are measured, the second column indicates the
number of examples tagged as noisy and the last two columns report the sentence
segmentation accuracy according to the F-Measure and the NIST error.

Iterations # Noisy (% of total) F-Meas. NIST err.

Baseline 0 81.71 35.59

10 2,000 (0.4) 81.52 35.31

20 1,000 (0.2) 81.84 35.31

50 3,000 (0.6) 82.00 34.95

100 4,000 (0.7) 82.18 34.45

200 5,000 (0.9) 82.03 34.68

300 6,000 (1.1) 81.94 35.06

400 8,000 (1.5) 81.67 35.16

500 10,000(1.9) 81.83 35.04

1000 6,000 (1.1) 82.00 34.72

of these settings, the number of wrong word boundary predictions done by the
new classifier was lower than in the baseline.

The optimal parameters used for the edges method was different than those
in [10], where the author suggests to stop the training after 10-20 iterations and
to exclude the top 5% examples. Our optimal solutions used 100 iterations and
excluded less than 2% of the examples.

Removing vs. Relabeling Examples. The methods presented above deter-
mine which examples were considered as noisy but not how to handle them. Once
we have detected noisy examples, we can either remove them from the training
set, or we can try to automatically relabel them. Since the sentence segmentation
problem is a binary classification problem, relabeling is straightforward: noisy
examples originally labeled with class s are changed to class n and vice versa.
However, in all of our experiments, we observed that although better than the
baseline, the performance obtained after relabeling the noisy examples was lower
or equal to the one obtained by simply excluding them. One explanation for this
is that the noisy relabeled examples do not bring much new knowledge to the
classifier, while examples that were correctly labeled and detected as noisy add
noise to the data when they are relabeled.

5 Discussion

In the previous section, we have shown that the sentence segmentation accuracy
improves when we exclude the noisy examples. While this is already a valuable
result, we believe there is more knowledge to extract from the noisy examples.
In the rest of this section, we examine the noisy examples for the committee-
based method with k = 10 and the exclusion of examples from the two classes.
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In this setting, the system detected 10, 786 noisy examples; 23% of them are
instances where the system introduced an additional sentence boundary, while
the remaining 77% are sentence boundaries that the system missed.

Among all the examples whose true class is a sentence boundary, we observe
that only 0.32% of the backchannels are noisy, 15.87% of the incompletes, 10.66%
of the statements, 12.99% of the floor-grabbers/holders and 11.95% for the ques-
tions. This confirms the intuition that disruptions are the most difficult cases to
label.

One possible source of errors in this work could be human mistakes in assigning
original dialog act boundaries. To explore this possibility, and further understand
errors made by the system, a researcher familiar with the original dialog act
annotation project hand-analyzed 200 randomly drawn errors using transcripts
only, but with information about reference human punctuation labels, including
disfluency markers and markers for incomplete sentences. Speech from other
talkers was also interspersed in the transcripts, and the length of pauses was
supplied. Of the original 200 examples, 10% were found difficult to understand
from transcripts alone; the analysis thus refers to the remaining 178 samples.
Of this set, only 13% were errors in the original human boundary labels, with
a nearly even split between missed boundaries and false alarms. Because the
analysis looks only at errors to begin with, this rate of human labeling error
is tolerable (although to estimate it properly would also require determining
the rate of felicitous correct machine decisions due to erroneous human labels).
The remaining of the 178 cases were deemed to have correct human boundary
labels.

The analysis becomes more interesting as we look at the remaining errors,
all attributable to the system. Percentages are given as the percentage of the
178 original cases referred to above. Over half (54%) of the remaining errors
fell into one of five groups. The first group, at 15%, had either a false start
or incomplete sentence preceding the boundary of interest. In a two-way clas-
sification of boundaries there is no good way to group such cases, since to the
left of the disruption they reflect no boundary, but to the right of the disrup-
tion they begin a new sentence and thereby suggest a boundary. To handle such
cases explicitly, one would need to train specific models for this third boundary
type. The second group, at 14%, comprises boundaries directly following filled
pauses or discourse markers. Considering floor-grabbers/holders as full sentence
boundaries, as explained in Section 1, is certainly the cause of this second class
of errors. Since these boundaries are not per se sentence boundaries, one way
of dealing with them would be to simply consider them as non-sentence bound-
aries or to treat them as a separate class. The third class of errors, which really
should not be counted as errors at all, are ambiguous examples in which a human
would have trouble assigning boundaries. An example of such a case is shown
in Figure 3, where the word boundary after the word document was labeled as
a statement, but considering it as a non-sentence boundary would clearly be
correct too. Fourth, boundaries after questions accounted for 9% of errors. It
is likely that the model suffers here both because question prosody often leaves
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... that’s relative to the structure of the x. m. l. document. (0.0)

not to the structure of what you’re representing ...

Fig. 3. Example tagged as noisy by the committee-based method. The parenthesis
indicate the length of the pause between the 2 words document and not.

pitch high, unlike the majority of boundaries occurring for statements that show
final falls. The language model may also have trouble with questions, which can
end in verbs or other syntactic classes that are unusual for sentence ends in
statements. Finally, about 5% of cases occurred at subsentential locations that
in text should contain a colon or semicolon. Such errors can be viewed similarly
to the errors made for disfluency boundaries: the subsentential boundaries re-
ally belong somewhere in between the no-boundary and boundary classes. The
remaining machine errors (at 33% of the 178 samples) had no obvious cause.
Within this set, missed boundaries were three times as likely as false alarms. We
can balance this ratio by setting the threshold to less than 0.5 and thus globally
detect more sentence boundaries, and this 3 to 1 ratio is thus not a general rule
and depends on the optimal threshold.

6 Conclusion

We presented four automatic methods to detect labeling error for automatic
sentence segmentation. Although tested only on the ICSI meeting corpus, the
methods can be applied to other conversational speech data, such as broadcast
conversation and telephone conversations. We showed that the sentence segmen-
tation accuracy improved when the noisy examples were first excluded from the
training set, with either of the four methods. Relabeling the noisy instead of
excluding them did not further improve the performance. We analyze 200 noisy
examples: 13% were found to be labeling errors, 54% were errors done by the
system that we could explain and that could be clustered into 5 main classes,
and the rest of them were errors done by the system for which there was no clear
explanation.

Further work will consist of using the knowledge extracted from the noisy ex-
amples to improve the sentence segmentation accuracy. Significant improvement
can especially be obtained by focusing particularly on incompletes and questions
detection.
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Abstract. This paper explores the issue of term-weighting in the genre
of spontaneous, multi-party spoken dialogues, with the intent of using
such term-weights in the creation of extractive meeting summaries. The
field of text information retrieval has yielded many term-weighting tech-
niques to import for our purposes; this paper implements and compares
several of these, namely tf.idf, Residual IDF and Gain. We propose that
term-weighting for multi-party dialogues can exploit patterns in word us-
age among participant speakers, and introduce the su.idf metric as one
attempt to do so. Results for all metrics are reported on both manual
and automatic speech recognition (ASR) transcripts, and on both the
ICSI and AMI meeting corpora.

1 Introduction

The primary focus of this research is to create extractive summaries of meeting
speech, in order to present users with concise and informative overviews of the
content of meetings. Such extractive summaries, when incorporated into a meet-
ing browser, can act as efficient tools for navigating meeting records as a whole.
This paper focuses on one fundamental component of the extractive summariza-
tion pipeline: the way that terms are weighted within a given meeting, and the
bearing that various term-weighting schemes have on extraction performance.

Choosing and implementing a term weighting method is often the first step
in building an automatic summarization system. Though the unit of extraction
may be the sentence or the dialogue act, those units need to be weighted by the
importance of their constituent words. Popular text summarization techniques
such as Maximal Marginal Relevance (MMR) and Latent Semantic Analysis
(LSA) begin by representing sentences as vectors of term weights. There is a
wide variety of term weighting schemes available, from simple binary weights of
word presence/absence to more complex weighting schemes such as tf.idf and
tf.ridf. Several of these are described in the following section.

A central question of this paper is whether term-weighting techniques devel-
oped for information retrieval (IR) and summarization tasks on text are well-
suited for our domain of multiparty spontaneous spoken dialogues, or whether
the patterns of word usage in such dialogues can be exploited in order to yield su-
perior term-weighting for our task. To this end, we devise and implement a novel
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term-weighting approach for multi-party speech called su.idf, based on differing
word frequencies among speakers in a meeting. This metric is compared with 3
popular term-weighting schemes - tf.idf, ridf and Gain - and the metrics are eval-
uated via an extractive summarization task on both AMI and ICSI corpora.

2 Previous Term Weighting Work

Term weighting methods form an essential part of any IR system. Terms that
characterize a given document well and discriminate the document from the
remainder of the document collection should be weighted highly [1]. The most
popular term weighting schemes have therefore combined collection frequency
metrics with term frequency metrics. The latter component measures the term’s
prevalence in the document at hand while the former component analyzes the
term usage across many documents.

The most common method of calculating collection frequency is called the
inverse document frequency (IDF) [2]. The IDF for term t is given by

IDF (t) = − log(
Dw

D
)

or equivalently,
IDF (t) = log D − log Dw

where D is the total number of documents in the collection and Dw is the number
of documents containing the term t. A term will therefore have a high IDF score
if it is rare across the set of documents.

For the term frequency component, the simplestmethod is a binary term weight:
0 if the term is not present and 1 if it is. More commonly, the number of term oc-
currences in the document is used. Thus the term frequency TF is given by

TF (t, d) =
N(t)

∑T
k=1 N(k)

where N(t) is the number of times the term t occurs in the given document
and

∑T
k=1 Nk is the total word count for the document, thereby normalizing the

term count by document length.
The classic method for combining these components is simply tf.idf [1], wherein

a term is scored highly if it occurs many times within a given document but rarely
across the set of all documents. This term weighting scheme tf.idf increases our
ability to discriminate between the documents in the collection. While there are
variants to the TF and IDF components given above [1], the motivating intuitions
are the same. Another example of combining these tree types of data (collection
frequency, term frequency and document length) is given by Robertson et al [3]
and is called the Combined Weight. For a term t(i) and document d(j), the Com-
bined Weight is described as:

CW (t, d) =
IDF (t) · TF (t, d) · (K + 1)

K · ((1 − b) + (b · (NDL(d)))) + TF (t, d)
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where K is a tuning constant regulating the impact of term frequency, b is a tuning
constant regulating the impact of document length, and NDL is the normalized
document length.

When relevance information is available, i.e. a subset of documents has been
determined to be relevant to a user query, additional proven metrics are available
for term relevance weighting and/or query expansion [3]. One example is the RSJ
metric given in [4]:

RSJ(t, q) = log

(
r

R−r

)

(
n−r

N−n−R+r

)

where R is the number of documents known to be relevant to the query q and r is
the number of relevant documents containing term t. The following variation is
sometimes used instead, partly to avoid infinite weights under certain conditions:

RW (t, q) = log(
((r + 0.5)(N − n − R + r + 0.5))

((n − r + 0.5)(R − r + 0.5))

It is often the case, however, that there is little or no relevance information
available when doing term weighting. Work by Croft and Harper [5] has shown
that IDF is an approximation of the RSJ relevance weighting scheme when com-
plete relevance information is unavailable. Robertson [6] further discusses the
relationship between IDF and relevance weighting and places the IDF scheme
on strong theoretical ground.

One extension of IDF called ridf [7] has proven effective for automatic summa-
rization [8] and named entity recognition [9]. In ridf, the usual IDF component
is substituted by the difference between the IDF of a term and its expected IDF
according to the poisson model. The ridf score can be calculated by the formula

expIDF = − log(1 − e(−fw/D))

ridf = IDF − expIDF

where fw is the frequency of the word across all documents D.
Papineni [10] also provides an extension to IDF. Arguing that the IDF of a

word is not synonymous with the importance of a word, but is rather an opti-
mal weight for document self-retrieval, Papineni proposes a term-weighting met-
ric Gain which is meant to measure importance or information gain of the term
in the document:

Gain =
D(t)
D

(
D(t)
D

− 1 − log
D(t)
D

)

Very common and very rare words have low gain; this is in contrast with IDF,
which will tend to give high scores to uncommon words. ridf also favors medium-
frequency words [8]. As Papineni points out [10], the effective performance of
metrics such as ridf and Gain seems to corroborate Luhn’s observation that
medium-frequency words have the optimal “resolving power” [11].
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Mori et al [12] introduce a term weighting metric for automatic summariza-
tion called Information Gain Ratio (IGR). The underlying idea of IGR is that
documents are clustered according to similarity, and further grouped into sub-
clusters. If the information gain of a word increases after clusters are partitioned
into sub-groups, then it can be said that the word contributes to that sub-cluster
and should thus be rated highly.

Finally, Song et al [13] introduce a term weighting scheme for automatic sum-
marization that is based on lexical chains. Building lexical chains in the manner
of Barzilay [14], they weight chains according to how many word relations are
in the chain, and weight each word in a chain according to how connected it
is in the chain. On DUC 2001 data, they reported outperforming tf and tf.idf
weighting schemes.

3 Term-Weighting for Meeting Speech

A common theme of most of the term-weighting metrics described in the previous
section is that the distribution of words across a collection of documents is key
to determining an ideal weight for the words. In general, words that are unique
to a given document or cluster of documents should be weighted more highly
than words that occur evenly throughout the entire document collection. For
multiparty spoken dialogue, we have another potential source of variation in
lexical usage: the speakers themselves. We introduce a new term weighting score
for multi-party spoken dialogues by also considering how term usage varies across
speakers in a given meeting. The intuition is that keywords will not be used by
all speakers with the same frequency. Whereas IDF compares a given meeting
to a set of all meetings, we can also compare a given speaker to a set of other
speakers in the meeting. For each of the four speakers in a meeting, we calculate
a surprisal score for each word that speaker uttered, which is the negative log
probability of the term occuring amongst the other three speakers. The surprisal
score for each word w uttered by speaker s is

surp(s, w) = − log

(∑
s′ �=s tf(w, s′)
∑

r �=s N(r)

)

where tf(w,s’) is the term frequency of word w for speaker s’ and N(r) is the
total number of words spoken by each speaker r. For each term, we total its
speaker surprisal scores and divide by the total number of speakers to find the
overall surprisal score surp(w). Thus the surprisal score for a word is given by

surp(w) =
1
S

∑

s

surp(s, w)

This surprisal score, the first component of the term-weighting metric, is then
multiplied by s(w)

S , where s(w) is the number of speakers who speak that word
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and S is the total number of speakers in the meeting. The third component of
the metric is the inverse document frequency, or idf. The equation for idf is

idf(w) = − log(
Dw

D
)

where D is the total number of documents and Dw is the number of docu-
ments containing the term w. Putting these three components together, our
term weighting metric is

su.idf = surp(w) · s(w)
S

·
√

idf

One motivation for this novel term weighting scheme is that many important
words in such meeting corpora are not necessarily rare across all documents,
e.g. cost, design and colour. They are also not necessarily the most frequent
content words in the meetings. They would therefore not score highly on either
component of . Though we retain inverse document frequency for our new metric,
the square root of idf is used to lower its overall influence within the metric,
so that a term will not necessarily be weighted low if it is fairly common or
weighted high simply because it is rare. Results on the development and test
sets show a significant improvement by using the square root of idf rather than
idf itself.

The hypothesis is that more informative words will be used with varying fre-
quencies between the four meeting participants, whereas less informative words
will be used fairly consistently by all. The component s(w)

S is included for two
reason. First, because individuals normally have idiosyncrasies in their speaking
vocabularies, e.g. one meeting participant might use a type of filled pause not
used by the others or otherwise frequently employ a word that is particular to
their idiolect. And second, a word that is used by multiple speakers but with
much different frequency should be more important than a word that is spoken
by only one person.

There are several reasons for hypothesizing that use of informative words will
vary between meeting participants. One is that meeting participants tend to
have unique, specialized roles relevant to the discussion. In the AMI corpus,
these roles are explicitly labelled, e.g. “marketing expert.” With a given role
comes a vocabulary associated with that role, e.g. “budget” and “cost” would
be associated with a finance expert and “scroll” and “button” would be associ-
ated with an interface designer. Second, even when the roles are not so clearly
defined, different participants have different areas of interest and different areas
of expertise, and we expect that their vocabularies reflect these differences.

4 Experimental Setup

In addition to tf.idf and su.idf, we also implemented Residual IDF (ridf ) and
Gain for comparison. A hybrid approach combining the rankings of tf.idf and
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su.idf was implemented in the hope that the two methods would be comple-
mentary, perhaps locating different types of informative terms. For all collection
frequency measures, we used a collection of documents from the AMI, ICSI,
Broadcast News and MICASE corpora. All term-weighting methods were run
on both manual and ASR transcripts.

4.1 Data Description

We tested our term-weighting methods on the AMI and ICSI meeting corpora,
which differ from one another in several important ways. The AMI meeting
corpus [15] is a corpus of both scenario and non-scenario meetings, though for
these experiments we used only scenario meetings. In these scenario meetings,
four participants take part in each meeting and play roles within a fictional
company. The scenario given to them is that they are part of a company called
Real Reactions, which designs remote controls. Their assignment is to design
and market a new remote control, and the members play the roles of project
manager (the meeting leader), industrial designer, user-interface designer, and
marketing expert. Through a series of four meetings, the team must bring the
product from inception to market. The participants are also given real-time
information from the company during the meetings, such as information about
user preferences and design studies, as well as updates about the time remaining
in each meeting. While the scenario given to them is artificial, the speech and
the actions are completely spontaneous and natural.

The AMI test set consists of 19 meetings, or 4 sequences of 4 meetings each
and 1 sequence of 3 meetings.

The second corpus used herein is the ICSI meeting corpus [16], a corpus of
75 natural, i.e. non-scenario, meetings, approximately one hour each in length.
The ICSI test set consists of 6 meetings.

ASR for both corpora was kindly provided by the AMI-ASR group. The word-
error rate (WER) for the AMI corpus is 43% while the WER for the ICSI corpus
is 29.5%.

For both corpora, multiple human annotations were carried out for evaluation
purposes. A human-authored abstract is created for each meeting, summarizing
the most important aspects of the meeting in terms of decision, actions and
goals of the meeting. Multiple human annotators then work through the meeting
transcript and link dialogue acts to sentences in the human abstract when they
find that a given dialogue act supports an abstract sentence. The result is a
many-to-many mapping between dialogue acts and sentences in the abstract, so
that a given dialogue act can be linked to more than one abstract sentence, and
vice-verse.

4.2 Evaluation Protocol

For our evaluation, each term-weighting approach was used to create a brief sum-
mary of each test set meeting, and the resulting summaries were then evaluated.
In each case we summed term-scores over dialogue acts to create scores for the
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dialogue acts, which are the summary extraction unit. Dialogue acts are ranked
from most informative to least informative, and are extracted until a length of
700 words is reached. These summaries are then evaluated using the weighted
precision metric originally introduced by Murray et al [17]. This metric is based
on the multiple human annotations of dialogue act importance described above.
Because each annotator creates a many-to-many mapping between dialogue acts
and sentences within the human abstract, we can score each summary dialogue
act according to how often each annotator linked it, and score the summary
overall based on the constitutent dialogue act scores.

5 Results

The following sections detail the results on both the AMI and ICSI corpora.

5.1 AMI Results

On manual transcripts, the best approaches were su.idf, the hybrid approach
combining su.idf and tf.idf, and ridf, all of which were significantly better than
tf.idf (p>0.95) and not significantly different from one another, according to
paired t-tests.

On ASR transcripts, Gain performed much better than it had on manual
transcripts, with higher weighted precision results than the other approaches.
su.idf also performed better on ASR, with its weighted precision increasing from
0.63 to 0.65. The hybrid approach slipped 2 points, while the tf.idf weighted

Table 1. Weighted Precision Results for AMI Test Set Meetings

Meet sidf sasr tfidf tfasr com comasr ridf ridfasr gain gainasr

ES2004a 0.50 0.51 0.50 0.59 0.55 0.55 0.59 0.64 0.63 0.63
ES2004b 0.59 0.67 0.58 0.55 0.59 0.60 0.67 0.65 0.64 0.69
ES2004c 0.66 0.63 0.69 0.64 0.76 0.67 0.76 0.71 0.59 0.67
ES2004d 0.69 0.75 0.85 0.77 0.99 0.78 0.77 0.79 0.78 0.85
ES2014a 0.67 0.70 0.68 0.71 0.67 0.71 0.70 0.76 0.65 0.73
ES2014b 0.76 0.81 0.74 0.70 0.86 0.72 0.79 0.75 0.77 0.83
ES2014c 0.74 0.78 0.69 0.67 0.88 0.77 0.83 0.80 0.69 0.71
ES2014d 0.51 0.40 0.44 0.40 0.48 0.44 0.43 0.36 0.33 0.43
IS1009a 0.85 0.73 0.68 0.72 0.69 0.73 0.74 0.78 0.74 0.73
IS1009b 0.65 0.83 0.50 0.68 0.57 0.70 0.65 0.73 0.57 0.78
IS1009c 0.50 0.52 0.34 0.36 0.46 0.42 0.44 0.45 0.44 0.56
IS1009d 0.74 0.60 0.73 0.58 0.81 0.71 0.75 0.69 0.58 0.50
TS3003a 0.53 0.50 0.48 0.48 0.54 0.52 0.57 0.60 0.63 0.61
TS3003b 0.63 0.73 0.64 0.59 0.57 0.55 0.68 0.67 0.70 0.72
TS3003c 0.89 0.93 0.89 0.87 0.86 0.90 0.80 0.79 0.80 0.92
TS3003d 0.46 0.54 0.41 0.51 0.46 0.54 0.59 0.56 0.63 0.63
TS3007a 0.37 0.54 0.35 0.54 0.37 0.52 0.50 0.57 0.51 0.57
TS3007b 0.62 0.61 0.57 0.54 0.66 0.56 0.67 0.62 0.59 0.59
TS3007c 0.70 0.64 0.61 0.48 0.64 0.60 0.55 0.57 0.60 0.73
AVERAGE 0.63 0.65 0.60 0.60 0.65 0.63 0.66 0.66 0.62 0.68

sidf=su.idf on manual, sasr=su.idf on ASR, tfidf=tf.idf on manual, tfasr=tf.idf on ASR,
com=combined su.idf and tf.idf on manual, comasr=combined su.idf and tf.idf on ASR,

ridf=residual IDF on manual, ridfasr=residual IDF on ASR, gain=Gain on manual,
gainasr=Gain on ASR.
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Table 2. Word Error Rates for Extracted (Summ-WER) and Non-Extracted Por-
tions (NonSumm-WER) of Meetings

Meet Summ-WER NonSumm-WER

ES2004a 47.1 56.0
ES2004b 35.5 45.9
ES2004c 34.8 48.1
ES2004d 43.6 54.8
ES2014a 43.5 56.9
ES2014b 37.4 53.9
ES2014c 43.9 54.5
ES2014d 39.6 53.6
IS1009a 42.6 50.0
IS1009b 43.9 48.5
IS1009c 59.2 57.6
IS1009d 46.3 46.5
TS3003a 26.7 45.2
TS3003b 25.2 30.3
TS3003c 22.7 34.8
TS3003d 27.9 38.2
TS3007a 33.6 44.3
TS3007b 27.1 38.3
TS3007c 31.8 42.7
AVERAGE 37.49 47.37

precision scores stayed much the same. Gain, su.idf and ridf all performed
significantly better than tf.idf. Table 1 gives results on both manual and ASR.

It was particularly surprising that some of the term-weighting approaches per-
formed better on ASR than on manual transcripts. Previous research [18,19] has
shown that informative portions of speech data tend to have lower word-error
rates, but it is nonetheless unexpected that weighted precision would actually
improve on errorful ASR transcripts. Gain and su.idf were particularly resilient
to the errorful transcripts on this test set. Table 2 shows the word-error rates
for the extracted and non-extracted portions of meetings using the su.idf sum-
marizer. The WER for the extracted portions is nearly 10 points lower than for
the non-extracted portions of meetings, at 37.49% versus 47.37%. The WER for
the corpus as a whole is around 43.0%.

To get a better idea of how su.idf and tf.idf differ in the way they score
and rank terms, and in particular why the performance gap increases on ASR,
we plotted term-score against term-rank for both metrics on one of the AMI
test set meetings, TS3003b. On manual transcripts, performance according to
weighted precision was comparable for this meeting. However, on ASR tran-
scripts weighted precision for su.idf increased by 10 points while the scores for
tf.idf decreased by 5 points. As Figure 1 shows, the relationship between term-
score and term-rank varies greatly depending on the metric. tf.idf tends to score
only a few words highly, so that there is a sudden drop-off in scores for words that
are ranked only slightly lower. In contrast, su.idf tends to score a larger number
of words highly and the descent of scores is less steep as the rank decreases.
This trend is found across meetings, and the difference between the approaches
is particularly pronounced on ASR.
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Fig. 1. Term Rank Plotted Against Term Score, ASR Transcripts

5.2 ICSI Results

On both manual and ASR transcripts there were fewer differences between term-
weighting approaches than were found on the AMI test set. On manual tran-
scripts, the highest scoring approaches were Gain and the hybrid of su.idf and
tf.idf ; however, there were no significant differences between approaches as a
whole. As can be seen in Table 3, the weighted precision scores in general are
much lower than on the AMI meetings.

On ASR, the highest scoring method was the hybrid approach, followed by
ridf. There were again no significant differences between the various methods.
Interestingly, however, all approaches tended to do better on ASR than on man-
ual transcripts, as evidenced previously on the AMI test set above. Surprisingly,
the only approach that showed decreasing weighted precision scores on ASR was

Table 3. Weighted Precision Results for ICSI Test Set Meetings

Meet sidf sasr tfidf tasr com comasr ridf ridfasr gain gainasr

Bed004 0.28 0.35 0.32 0.37 0.33 0.41 0.33 0.35 0.35 0.38
Bed009 0.53 0.45 0.44 0.38 0.45 0.42 0.38 0.38 0.39 0.39
Bed016 0.38 0.47 0.52 0.53 0.46 0.56 0.59 0.62 0.50 0.46
Bmr005 0.44 0.44 0.44 0.49 0.52 0.44 0.53 0.54 0.53 0.55
Bmr019 0.37 0.33 0.25 0.31 0.34 0.41 0.30 0.32 0.35 0.40
Bro018 0.36 0.36 0.39 0.32 0.41 0.36 0.36 0.32 0.39 0.29
AVERAGE 0.39 0.40 0.39 0.40 0.42 0.43 0.42 0.42 0.42 0.41

sidf=su.idf on manual, sasr=su.idf on ASR, tfidf=tf.idf on manual, tfasr=tf.idf on ASR,
com=combined su.idf and tf.idf on manual, comasr=combined su.idf and tf.idf on ASR,

ridf=residual IDF on manual, ridfasr=residual IDF on ASR, gain=Gain on manual,
gainasr=Gain on ASR.
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Gain, which slipped by a point. This is in contrast to the AMI results, where
Gain did significantly better on ASR transcripts than on manual.

6 Discussion

There are several interesting aspects of the results reported above. Perhaps the
most surprising is that some of the metrics, especially su.idf and Gain, are
particularly resilient to ASR errors, and we found a general trend that weighted
precision actually increased on ASR.

We also found that most of our metrics easily outperformed the classic tf.idf
term-weighting scheme, with su.idf, the hybrid approach and ridf consistently
performing the best. While su.idf outperformed tf.idf on the AMI corpus meet-
ings, there was no statistical difference between the two approaches on the ICSI
meetings. However, it was still advantageous to calculate su.idf on those meet-
ings, as the hybrid approach was superior. Part of the reason for the difference
in performance of those two metrics on AMI versus ICSI meetings may be due
to the structure and set-up of the meetings themselves. As described above,
the AMI meetings are scenario meetings with well-defined roles such as project
manager and marketing expert, whilst roles in the ICSI corpus are much less
clearly defined. Because roles are associated with certain vocabularies (e.g. the
marketing expert being more likely to say “trend” or “survey” than the oth-
ers), perhaps it would be expected that su.idf would perform better on those
meetings than on meetings where roles are more opaque and the structure of
the meetings is more loosely defined. Having said that, there were no significant
differences between any of the term-weighting approaches on the ICSI meetings,
and the results on a smaller test-set may simply be less reliable.

One clear result is that tf.idf is not as sensitive to term importance as the
other metrics. It seems telling then that it is also the only metric that weights
a term highly for occurring frequently within the given document. It is perhaps
too blunt, favoring a few terms by scoring them highly and scoring the others
dramatically lower, leading to a severely limited view of importance within the
meeting. A strength of su.idf is that a term need not be very frequent within a
document nor very rare across documents in order to receive a high score.

Our evaluation has relied on weighted precision of summaries that were cre-
ated using each term-weighting scheme. We currently limit the evaluation to
precision because the summaries are very brief and subsequently all recall scores
are quite small. In the future we may wish to expand our evaluation to weighted
precision, recall and f-measure, perhaps using longer automatic summaries. The
weighted precision metric also, as currently formulated, does not have a theo-
retical maximum due to the fact that annotators may link each dialogue act as
many times as they wish. One solution would be to use only the number of an-
notators who link each dialogue act, rather than the number of links they give to
each dialogue act, thus providing a maximum score across summaries. However,
doing so would cause us to lose a substantial amount of information in the form
of annotator link counts.
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7 Future Work

While exploiting differences in term usage among speakers has been promis-
ing, we believe there are additional speech-based features to exploit for term-
weighting. One example is that informative terms used in meeting speech should
tend to cluster into portions of the meeting roughly correlating to topic struc-
ture, whereas less informative words will be spread throughout the meeting. In
addition, measures of prosodic prominence such as energy and F0 variance may
be informative for locating more important words within the meeting.

8 Conclusion

We have presented an evaluation of term-weighting metrics for spontaneous,
multi-party spoken dialogues. Three of the metrics, tf.idf, ridf and Gain, were
imported from text IR to test for suitability with our data. A novel approach
called su.idf was implemented, relying on the differing patterns of word usage
among meeting participants. It was found to perform very competitively, both
on its own and as part of a hybrid approach using combined rankings with tf.idf.
In addition to the encouraging results for su.idf, we have provided evidence that
ridf and Gain outperform tf.idf on our speech data.
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Abstract. Decision making is an important aspect of meetings in or-
ganisational settings, and archives of meeting recordings constitute a
valuable source of information about the decisions made. However, stan-
dard utilities such as playback and keyword search are not sufficient
for locating decision points from meeting archives. In this paper, we
present the AMI DecisionDetector, a system that automatically detects
and highlights where the decision-related conversations are. In this pa-
per, we apply the models developed in our previous work [1], which de-
tects decision-related dialogue acts (DAs) from parts of the transcripts
that have been manually annotated as extract-worthy, to the task of de-
tecting decision-related DAs and topic segments directly from complete
transcripts. Results show that we need to combine features extracted
from multiple knowledge sources (e.g., lexical, prosodic, DA-related, and
topical class) in order to yield the model with the highest precision. We
have provided a quantitative account of the feature class effects. As our
ultimate goal is to operate AMI DecisionDetector in a fully automatic
fashion, we also investigate the impacts of using automatically generated
features, for example, the 5-class DA features obtained in [2].

keywords: Spoken language understanding, meeting tracking and
analysis, argumentation modelling0.

1 Introduction

Recent advances in multimedia technologies have led to huge archives of audio
and video recordings of meetings. Reviewing decisions is an aspect central to
our organizational life [3,4]. For example, it would be helpful for a new engi-
neer assigned to a project to review the major decisions that have been made in
previous meetings by watching the recordings. However, while it is straightfor-
ward to archive a meeting, finding out what decisions have been made from the
recording is still a challenging task. Unless all decisions are recorded in meeting
minutes or annotated in the audio-video recordings, it is difficult to locate the
decision points using existing browsing and playback utilities alone. Moreover,
a recent study [5] has shown that even when a standard keyword search utility
is provided, it is still difficult to recover information about the argumentative
process in the discussion (e.g., decision points).
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Fig. 1. Example application that demonstrates the use of decision-related topic seg-
ment information. The bottom right component shows a list of topic segments in an
example meeting. The topic segments shaded in red are those that contain at least
one decisions. The number shown in the parenthesis following each topic segment label
indicates the number of decisions reached within the topic segment.

Banerjee and Rudnicky [6] have demonstrated that it is easier to recover
information for user queries if the meeting record includes discourse-level anno-
tations, such as topic segmentation, speaker role, and meeting state1. To assist
users in revisiting decisions within meeting archives, our goal is thus to automat-
ically annotate decision-related information on the dialogue acts and discussion
segments where decisions are made. As the development of such an automatic
decision detection component is critical to the re-use of meeting archives [7], it is
expected to lend support to the development of other downstream applications,
such as computer-assisted meeting tracking and understanding (e.g., assisting
in the fulfilment of the decisions made in meetings) and group decision support
systems (e.g., constructing group memory) [8,9].

Previous research has developed descriptive models of meeting discussions.
Some of them focus on modelling the dynamics [10], while the others focus on
modelling the content [11,4]. While automatically extracting these argument
models remains a challenging task, researchers have begun to make progress
towards this goal [12,13,14,1,15,16].

In this paper, we present the AMI DecisionDetector, which performs auto-
matic decision detection in meeting speech and provides visual aids for users
wishing to review decisions. In particular, we are interested in locating decision-
related information at two levels of granularity: topic segments and dialogue
acts. First, the system detects decision-related topic segments in which meeting
participants have reached at least one decision. As shown in Figure 1, this allows

1 Meeting states include discussion, presentation and briefing.
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Fig. 2. Example application that demonstrates the use of decision-related DA infor-
mation. The bottom right component shows a set of decision-related DA extracts that
are representive of the design decision of “how to find (the remote) when misplaced”.

users to get an overview of the decisions made in previous meetings by browsing
the topics of the decision-related segments (e.g., those shaded in red in Figure 1).

Second, the system detects decision-related dialogue acts (DAs) by looking
for DAs which are extract-worthy and reflective of the content of the decision
discussions. As shown in Figure 2, this allows users to obtain details about the
decisions they are particularly interested in by reviewing the relevant decision-
related DAs. For example, if a user wants to know more about the design decision
of “how to find (the remote) when misplaced”, they can interpret the decision
as “not to worry about designing a function to find the remote when misplaced”
by looking at the extract shown in the bottom right component of Figure 2.

2 Data

In this study, we use a set of 50 scenario-driven meetings (approximately 37,400
DAs) that have been segmented into dialogue acts and annotated with decision
information in the AMI meeting corpus [17]. These meetings are driven by a
scenario, wherein four participants play the role of Project Manager, Marketing
Expert, Industrial Designer, and User Interface Designer in a design team in a
series of four meetings. Participants participated in only one series of 4 meetings.
The corpus includes manual transcripts for all meetings as well as individual
sound files recorded by close-talking microphones for each participant and cross-
talking sound files recorded by an 8-element circular microphone array.

The meeting recordings have been annotated at several levels, including di-
alogue acts (DAs) and topics. The DA annotation scheme for the AMI corpus
consists of 15 dialogue act types, which can be organised into five major groups:

– Information (31.9%): giving and eliciting information. E.g., “Suggestion”.
– Action (9.8%): making or eliciting suggestions or offers. E.g., “Elicit-

suggestion”.
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– Commenting on the discussion (22.6%): making or eliciting assessments and
comments about understanding. E.g., “Assessment”.

– Segmentation (31.8%): not contributing to the content but allowing segmen-
tation of the discourse, E.g., “Backchannel”, “Stall”, and “Fragment”.

– Other (3.9%): a remainder class for utterances which convey an intention,
but do not fit into the four previous categories.

Topic segmentation and labels have also been annotated in the AMI meeting
corpus. Annotators had the freedom to mark a topic as subordinated (down to
two levels) wherever appropriate. In this work, we have flattened the structure
into a hierarchy of two layers: top-level (TOP) and subtopic level (SUB). As the
AMI meetings are scenario-driven, annotators are expected to find that most
topics recur. Therefore, they are given a standard set of descriptions that can
be used as labels for each identified topic segment. In particular, the annotators
explicitly identify those parts of the meeting that refer to the meeting pro-
cess (e.g., opening, closing, agenda/equipment issues), or are simply irrelevant
(e.g., chitchat). To capture the common characteristics of these off-topic discus-
sion segments, we have collapsed these segments into one category: functional
segments (FUNC). The AMI scenario meetings takes, on average, 30 minutes
(around 800 DAs) and contain eight top-level topic segments and seven sub-
topic segments per meeting.

2.1 Decision-Related Dialogue Acts

It is difficult to determine whether a DA contains information relevant to deci-
sion without knowing what decisions have been made in the meeting. Therefore,
in this study decision-related DAs are annotated in a two-phase process: First,
annotators are asked to browse through the meeting record and write an abstrac-
tive summary about the decisions that have been made in the meeting. In this
phase, another group of three annotators are also asked to produce extractive
summaries by selecting a subset (around 10%) of DAs which form a summary
of this meeting. Annotators are instructed to produce these summaries for an
absent project manager.

Finally, this group of annotators are asked judge whether the DAs in the
extractive summary support any of the sentences in the abstractive decision
summary; if a DA is related to any sentence in the decision section of the ab-
stractive summary, a “decision link” from the DA to the decision sentence in the
abstractive summary is added. For those extracted DAs that do not have any
closely related sentence, the annotators are not obligated to specify a link. We
then label the DAs that have one or more decision links as decision-related DAs.

In the 50 meetings we used for our experiments, annotators found on average
four decisions per meeting and specified around two decision links for each deci-
sion sentence in the abstractive summary. Overall, 554 out of 37,400 DAs have
been annotated as decision-related DAs, accounting for 1.4% of all DAs in the
data set and 12.7% of the original extractive summaries (which consist of the
extracted DAs). An earlier analysis established the intercoder reliability of the
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two-phase process at a kappa ranging from 0.5 to 0.8. In these experiments, for
each meeting in the 50-meeting dataset we randomly choose the decision-related
DA annotation of one annotator as the source of ground truth data.

2.2 Decision-Related Topic Segments

Decision-related topic segments are operationalized as the topic segments that
contain one or more decision-related DAs. Overall, 198 out of 623 (31.78%) topic
segments in the 50-meeting dataset are decision-related topic segments. As the
meetings we use are driven by a scenario, we expect to find that interlocutors
are more likely to reach decisions when certain topics listed in a predetermined
agenda are brought up or when the discussions are related to the decisions made
in previous meetings. For example, 80% of the segments labelled as Costing and
58% of those labelled Budget are decision-related topic segments, whereas only
7% of the Existing Product segments and none of the Trend-Watching segments
are decision-related topic segments. (See Table 1 for a break-down of different
types of decision-related segments.)

Table 1. Characteristics of topic segments that contain decision-related DAs

ALL TOP SUB FUNC

Percentage of Decision-related topicsegments per meeting (%) 33% 31% 35% 4%

Average number of decision-related dialogue acts per segment 3.7 4.5 2.76 3.83

3 AMI DecisionDetector

To locate decision-related information at the two levels of granularity, the AMI
DecisionDetector consists of two components: (1) a decision-related DA detector
which identifies important DAs pertaining to the decisions made, and (2) a
decision-related topic segment detector which identifies the topic segments in
which interlocutors have reached one or more decisions.

In the field of multiparty discourse understanding, previous research has com-
monly utilized a classification framework, in which variants of models are com-
puted directly from data for classifying unseen instances. Models has been suc-
cessfully trained for detecting the content topics [18], group activities [2,19,20],
participant roles [21], addressees [22], and emotional effects (e.g., group level of
interest [13], hot spots [16]). In this work, we have adopted a similar framework:
the task of automatically detecting decision-related DAs is decomposed to a se-
ries of binary decisions [1]. A Maximum Entropy (MaxEnt) model is trained to
automatically classify whether a DA is decision-related or not.

We evaluate the decision-related DA detector with a five-fold cross validation
procedure using the set of 50 scenario-driven meetings. In each fold, a Maximum
Entropy (MaxEnt) classifier is used to train models that can classify decision-
related DAs on a subset of 40 meetings; next, the trained model is tested on the
remaining 10 meetings that are unseen in the training phase. The decision-related
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topic segment detector leverages the set of outputs (i.e., binary decisions) from
the decision-related DA detector to classify whether an unseen topic segment
contains any decisions. The task of detecting decision-related topic segments thus
can be viewed as that of recognizing decision-related DAs in a wider window.

3.1 Features Used

Previous work has shown that combining multiple knowledge sources (e.g., words,
audio-video recordings, speaker intention) is important to automatically identify-
ing different aspects of the argumentative process [18]. For example, paralinguistic
features (e.g., prosody and the amount of disfluency) have been applied to de-
tect deceptive speech [23]. Paralinguistic features have also been combined with
features that indicate speaker intention (i.e., DA classes) to detect “hot spots”2

[24,16]. Similarly, lexical features, such as occurrence counts of cue words, have
been used to detect learning attitudes of students in a tutoring system [25] and to
detect where speakers are agreeing with one another [12,14].

Here we are interested in examining the merits of multimodal feature combi-
nations on the performance of AMI DecisionDetector. In particular, we examine
the use of the following features:

Prosodic Features: Our previous work [1] has shown that there exist prominent
acoustic characteristics of decision-related DAs. For example, when it comes to
a decision point, interlocutors either speak very fast or very slowly; the pitch
usually goes up first and then goes down in the midpoint of a dialogue act.
In this work, we use the same set of prosodic features, i.e., duration, pause,
speech rate, pitch contour, and energy level. For details of how to generate these
features with Shriberg and Stolcke’s direct modelling approach [26], please refer
to [27]. An exploratory study has shown the benefits of including immediate
prosodic contexts, and thus we also include prosodic features of the immediately
preceding and following DA.

Lexical Features: Previous work has also shown the importance of the lexical
characteristics of decision-related DAs. For example, interlocutors use “We”
more than “I ” and “You” when reaching a decision. Likewise, they also explicitly
mention topical words, such as “advanced chips” and “functional design”, and
use fewer negative expressions, such as “I don’t think“ and “I don’t know”. Thus
we also include lexical items in our feature sets. In each fold of cross validation,
we compile a list of cue words, which have occurred more than once in the
set of decision-related DAs in the “training” set of meetings. Each DA is then
represented as a vector of unigrams in the list of cue words.

DA-related Features: These include DA classes and speaker roles (e.g., project
manager, marketing expert). We also include DA classes of the immediately
preceding and following DA. As mentioned in Section 2, we have grouped the 15
DA classes (15-Class) into five major groups (5-Class). We have also obtained the
automatic 5-Class predictions for each DA [2]. The accuracy of the automatic DA

2 Namely locations that exhibit a high level of affect in the voices of interlocutors.
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class predictions is 59.1%. In the following experiment, we thus can evaluate the
impact of the three different versions of DA class information: manual 15-Class,
manual 5-Class, and automatic 5-Class.

Topical Features: As reported in Section 2.2, we find that interlocutors are
more likely to reach decisions when certain topics are brought up. Also, we
expect decision-making conversations to take place towards the end of a topic
segment. Therefore, we include the following features: the label of the current
topic segment, the position of the DA in a topic segment (measured in words,
in seconds, and in %), the distance to the previous topic shift (both at the top-
level and subtopic level)(measured in seconds), the duration of the current topic
segment (both at the top-level and subtopic level)(measured in seconds).

4 Results

In Section 3.1, we described the four major types of features used in this study:
prosodic (PROS), unigrams (LX1), DA-related (DA), and topical (TOPIC) fea-
tures. As opposed to our previous work, which detects decision-related DAs on
only the parts of meetings that have been identified as extract-worthy, we trained
models to detect decision-related DAs directly from entire transcripts. We expect
this task to be much more challenging as the imbalance between positive and
negative cases is even more prominent. The proportion of positive cases has gone
from 14% down to 2%. For comparison, we use the lexical models trained with
the unigram lexical features (LX1) as our baseline.3 The different combinations
of features we used for training models can be divided into the three groups: (A)
lexical features alone (BASELINE); (B) all available features except one of the
four types of features (ALL-LX1, ALL-PROS, ALL-DA, ALL-TOPIC); and (C)
all available features (ALL).

4.1 Experiment 1: Classifying Decision-Related Dialogue Acts and
Topic Segments

Table 2 reports the performance on both the training (40 meetings) and the test
set (10 meetings). Because previous work has shown that ambiguity exists in
the assessment of the exact timing of decision-related DAs, the results in Table
2 are obtained using a lenient match measure, allowing a window of 20 seconds
preceding and following a hypothesized decision-related DA for recognition. The
task of detecting decision-related topic segments can be viewed as that of de-
tecting decision-related DAs in a wider window. The right most three columns
of the training set and test set results in Table 2 show the results of detecting
decision-related topic segments.

The results demonstrate that, compared to the LX1 baseline, models trained
with all features (ALL), including lexical, prosodic, DA-related and topical fea-
tures, yield notably better precision on the task of decision-related topic segment
3 Please note that the LX1 features used here are obtained on manual transcripts; so

the lexical models can only be viewed as being trained semi-automatically.
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Table 2. Effects of different combinations of features on detecting decision-related DAs
and topic segments

TRAIN SET TEST SET

Decision-Related Dialogue Act Topic Segment Dialogue Act Topic Segment

Accuracy P R F1 P R F1 P R F1 P R F1

BASELINE(LX1) 0.32 0.47 0.38 0.44 0.65 0.52 0.22 0.39 0.28 0.39 0.65 0.49

ALL-LX1 0.64 0.10 0.18 0.72 0.13 0.22 0.35 0.07 0.11 0.52 0.17 0.25
ALL-PROS 0.69 0.46 0.55 0.72 0.53 0.61 0.30 0.16 0.21 0.51 0.38 0.43
ALL-DA 0.70 0.48 0.57 0.72 0.56 0.63 0.32 0.24 0.26 0.49 0.44 0.46

ALL-TOPIC 0.64 0.36 0.46 0.70 0.48 0.57 0.24 0.18 0.20 0.49 0.41 0.44

ALL 0.72 0.38 0.49 0.74 0.45 0.55 0.35 0.19 0.24 0.56 0.38 0.44

prediction, 74% on the training set and 56% on the test set. However, in the test
set, the overall accuracy (F1 score) of the combined models is relatively worse
than the baseline, due to the substantially lower recall rate.

To study the relative effect of the different feature types, Rows 2-5 in the
table report the performance of models in Group B, which are trained with all
available features except LX1, PROS, DA and TOPIC, respectively. The amount
of degradation in the overall accuracy (F1) of each of the models in relation to
that of the ALL model indicates the contribution of the feature type that has
been left out. For example, we find that the ALL model outperforms all except
the model trained by leaving out DA-related features (ALL-DA). A closer inves-
tigation of the precision and recall of the ALL-DA model shows that including
the DA-related features is detrimental to recall but beneficial for precision. This
effect stems from the fact that decisions are more likely (1) to occur in certain
types of dialogue acts, such as “Inform”, “Suggest”, “Elicit-Assessment”, and
“Elicit-Inform”, and (2) to be preceded and followed by segmentation-type di-
alogue acts, such as “Stall” and “Fragment”. Therefore, training models with
DA-related features, such as the DA class of the current DA and its immediate
context, helps eliminate incorrect predictions of decision-related DAs.

In sum, results suggest that (1) lexical features are the most predictive in
terms of overall accuracy, despite low precision, (2) prosodic features have pos-
itive impacts on precision but not on recall, and (3) DA-related and topical
features are both beneficial to precision but detrimental to recall.

4.2 Experiment 2: Exploring Automatically Generated DA Class
Features

As our ultimate goal is to operate AMI DecisionDetector in an automatic fashion,
we evaluate the impact of the automatically generated DA class features on the
task of detecting decision-related DAs and topic segments. We have utilized the
5-class DA predictions (AUTO-5DA) generated in [2]. To understand whether
the automatically generated features caused any degradation, we train models
which combine all available lexical, prosodic and topical features with the AUTO-
5DA features. We then evaluate the AUTO-5DA model against other models
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Table 3. Effects of different versions of DA class features on detecting decision-related
DAs and topic segments

TRAIN SET TEST SET

Decision-Related Dialogue Act Topic Segment Dialogue Act Topic Segment

Accuracy P R F1 P R F1 P R F1 P R F1

EXTRACT (MANUAL-15DA) 0.73 0.61 0.66 0.74 0.66 0.69 0.37 0.38 0.36 0.50 0.53 0.50
EXTRACT (MANUAL-5DA) 0.70 0.77 0.70 0.68 0.73 0.70 0.36 0.44 0.39 0.49 0.62 0.54
EXTRACT (AUTO-5DA) 0.69 0.71 0.70 0.68 0.73 0.70 0.33 0.40 0.35 0.46 0.55 0.49

which combine the other features with the two types of manually annotated
dialogue act class features: MANUAL-5DA and MANUAL-15DA. The results
reported here are obtained by operating AMI DecisionDetector on the part of
meetings that have been manually annotated as extract-worthy. This is because
we want to focus on analyzing the impacts of the automatic DA features on the
task of decision detection, rather than on that of extractive summarization.

Results in Table 3 show that our strategy that groups 15 DA classes into
five major classes is beneficial to the models on the task of decision detection.
It improves the recall of predicting decision-related topic segments by 18%. Re-
placing the manual 5-class DA features with the automatically generated version
degrades the performance by 10%. However, the accuracy of prediction using the
5 automatically predicted DA classes (AUTO-5DA) compares favorably with the
accuracy when using the 15 manually annotated DA classes (MANUAL-15DA).

5 Conclusions and Future Work

In this paper, we present AMI DecisionDetector, a system which performs au-
tomatic decision detection in meeting speech and provides visual aids for users
who wish to review decisions. To avoid the costly requirement of operating on
extractive summaries, we have examined how our computational models per-
form when detecting decisions directly from complete meeting transcripts. We
have evaluated the models on the task of predicting decision-related discussions
at two levels of granularity: dialogue acts and topic segments. To further over-
come the problem of imbalanced class distribution (i.e., only 2% are positive
cases), we have leveraged a variety of knowledge sources (e.g., words, prosody,
DA-related contexts, topic annotations). Experimental results suggest that the
model combining all the available knowledge sources performs substantially bet-
ter, achieving 74% and 56% precision on the task of detecting decision-related
topic segments in the training set and test set respectively. The framework we
applied here can also be used to recover information for other aspects in the
argumentation process, such as problems and action items.

We have also provided a quantitative account of the merits of different feature
classes. Among features that are extracted from the widely ranging knowledge
sources, lexical features are the most indispensable. Also, DA-related features
can improve the precision of models but degrade the recall. These findings are
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consistent with the results of our previous experiment which operates AMI De-
cisionDetector on a selective set of dialogue acts in the transcripts.

However, there are also other findings that no longer hold true when our
system is operated on complete transcripts. For example, [1] has shown topical
features have a distinctive advantage for locating decision topic segments from
extractive summaries. However, this is not the case when identifying decision
points in entire transcripts. In addition, the model trained with lexical features
alone outperforms the combined model in its recall rate. This is possibly because
when attempting to detect decisions from the whole transcripts, the system needs
to simultaneously disambiguate the extract-worthy and decision-related dialogue
acts. Therefore, features that are good at disambiguating both will stand out,
and features that fail in the extract-worthy DA detection task will be shown as
weak features to the final performance of decision-related DA detection.

Another drawback of our previous approach is that many of the features
used in this study require human intervention, such as manual transcriptions,
annotated DA segmentations and labels, and other types of meeting-specific
features (e.g., speaker role). However, these semi-automatic and manual features
are not always available. Therefore, in this work we tested whether our system is
robust to the noise introduced by the automatically generated versions of these
features. An exploratory study has shown that the performance of our approach
does not degrade considerably after replacing the reference words with the ASR
words, despite word recognition errors. Our further investigation on the impacts
of using an automatically generated version of the DA class features (as reported
in [2]) shows that it is possible to include these automatic features in the model
directly. It will not degrade the performance more than including the manually
annotated 15-class DA features in the first place.

Also, our approach which automatically extracts decision-related DAs as sum-
maries has some liabilities. First, the unconnected DAs in the extract result in
semantic gaps that require contextualization to bridge. Second, anaphora and
unexpected topic shifts between these extracted DAs also require context to re-
solve. Previously, we have attempted to provide such contexts by indicating the
topic of the current discussion. However, a preliminary study has shown that
the segment boundaries of decision-related discussions coincide with that of the
topic segments less than 50% of the time. Last but not least, although it is our
intuition that the decision-related DA extracts will assist users in finding and
absorbing information in the meeting archives more efficiently and effectively,
this assumption has yet to be tested with human subjects.

Therefore, we are now planning to conduct an extrinsic decision audit task-
based evaluation on the utility of displaying decision-related DA information (as
exemplified in Figure 2) to the users. We have also annotated decision-related
discussion segmentation, which can be used to train computational models to find
contexts that are needed for the interpretation of the identified decision points.
Moreover, as we would like to disambiguate which sentence in the abstractive
decision summary of a meeting is the most relevant to each of the identified
decision points, the decision discussion segmentation annotations can also form
a foundation for the development of the disambiguation model.
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Abstract. Recent research progress in developing of the Czech – Sign
Speech synthesizer is presented. The current goal is to improve the sys-
tem for automatic synthesis to produce accurate synthesis of the Sign
Speech. The synthesis system converts written text to an animation of
an artificial human model (avatar). This includes translation of text to
sign phrases and their conversion to the animation of the avatar. The
animation is composed of movements and deformations of segments of
hands, a head and also a face. The system has been evaluated by two
initial perceptual tests. The perceptual tests indicate that the designed
synthesis system is capable to produce the intelligible Sign Speech.

Keywords: Sign speech, automatic synthesis, machine translation.

1 Introduction

In the scope of this paper, we use the term Sign Speech (SS) for both the
Czech Sign Language (CSE) and Signed Czech (SC). The CSE is a natural
and adequate communication form and a primary communication tool of the
hearing-impaired people in the Czech Republic. It is composed of the specific
visual-spatial resources, i.e. hand shapes (manual signals), movements, facial
expressions, head and upper part of the body positions (non-manual signals). It
is not derived from or based on any spoken language. CSE has basic language
attributes, i.e. system of signs, double articulation, peculiarity and historical
dimension, and has its own lexical and grammatical structure. On the other
hand, the SC was introduced as an artificial language system derived from the
spoken Czech language to facilitate communication between deaf and hearing
people. SC uses grammatical and lexical resources of the Czech language. The
Czech sentence is audibly or inaudibly articulated during the SC production and
the CSE signs of all individual words of the sentence are simultaneously signed
with the articulation.

The use of written language instead of spoken one is a wrong idea in the case
of the Deaf. Hence, the Deaf have problems with understanding the majority
language (the language used by hearing people) when they are reading a written
text. The majority language is the second language of the Deaf and its use by
� Support for this work was provided by the Grant Agency of Academy of Sciences of

the Czech Republic, project No. 1ET101470416 and MŠMT LC536.
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Fig. 1. The schema of the Sign Speech synthesis system

the deaf community is only particular. Thus, the majority language translation
into the Sign Speech is highly important for better orientation of the Deaf in the
majority language-speaking world. Currently, human interpreters provide this
translation, but their service is expensive and not always available. A full dialog
system (with ASR and Text-to-Sign-Speech (TTSS) systems on one side (from
spoken to sign language) and Automatic-Sign-Speech-Recognition (ASSR) and
TTS systems on the other side (from sign to spoken language)) represents a
solution which does not intend to fully replace the interpreters, but its aim is
to help in everyday communication in selected constrained domains such as the
post office, health care, traveling, etc.

Our synthesis system consists of two parts: the translation and the conversion
subsystem (see Figure 1). The translation system transfers Czech written text to
its textual representation in the Sign Speech (textual sign representation). The
conversion system then converts this textual sign representation to an animation
of an artificial human model (avatar). The resulting animation then represents
the corresponding utterance in the Sign Speech.

The translation system is an automatic phrase-based translation system. A
Czech sentence is divided into phrases and these are then translated into corre-
sponding Sign Speech phrases. The translated words are reordered and rescored
using a language model at the end of the translation process. In our synthesizer
we use own implementation of simple monotone phrase-based decoder - SiM-
PaD. This decoder and its performance will be described in more details in next
section.

The problem of translated phrase conversion is composed of the isolated
sign animation and their concatenation. Each sign is expressed by the man-
ual and non-manual component. The manual component represents necessary
movements, orientations and shapes of hands. The non-manual component is
composed of complemented movements of the upper half-body, face gestures
or face articulation (lips and inner mouth organs). The symbolic notation Ham-
NoSys1 (Hamburg Notation System for Sign Languages) was applied for control-
ling of the manual component and the no-facial upper half-body movements. The
synthesis of a mouth articulation is separately supplemented by a talking head
system.

1 Available at www.sign-lang.uni-hamburg.de/projects/HamNoSys.html.
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2 Translation System

The machine translation model is based on the noisy channel model. When
we apply the Bayes rule on the translation probability p(t|s) for translating a
sentence s in a source language into a sentence t in a target language we obtain:

argmaxtp(t|s) = argmaxtp(s|t)p(t)

Thus the translation probability p(t|s) is decomposed into two separate mod-
els: a translation model p(s|t) and a language model p(t) that can be modeled
independently. In the case of phrase-based translation the source sentence s is
segmented into a sequence of I phrases s̄I

1 (all possible segmentations have the
same probability). Each source phrase s̄i, i = 1, 2, ..., I is translated into a target
phrase t̄i in the decoding process. This particular ith translation is modeled by a
probability distribution φ(s̄i|t̄i). The target phrases can be reordered to get more
precise translation. The reordering of the target phrases can be modeled by a
relative distortion probability distribution d(ai−bi−1) as in [1], where ai denotes
the start position of the source phrase which was translated into the ith target
phrase. bi−1 denotes the end position of the source phrase translated into the
(i−1)th target phrase. Also a simpler distortion model d(ai−bi−1) = α|ai−bi−1−1|

[1], where α is a predefined constant, can be employed. The best target output
sentence tbest can then be for a given source sentence s acquired as:

tbest = argmaxtp(t|s) =
I∏

i=1

[φ(s̄i|t̄i)d(ai − bi−1)]pLM (t)

Where pLM (t) is a language model of the target language (usually a trigram
model with some smoothing, built from a huge portion of target texts).

2.1 Comparison of Decoders

We will compare SiMPaDs performance with the performance of state-of-the-art
phrase-based decoder Moses in case of Czech to Signed Czech translation. And
we will introduce class-based language model and post-processing method which
either improve results of translation.

Decoders. The first decoder is freely available state-of-the-art factored phrase-
based beam-search decoder - MOSES [2]. Moses can work with factored rep-
resentation of words (i.e. surface form, lemma, part-of-speech, etc.) and uses a
beam-search algorithm, which solves a problem of the exponential number of
possible translations (due to the exponential number of possible alignments be-
tween source and target translation) for efficient decoding. The training tools for
extracting of phrases from the parallel corpus are also available, i.e. the whole
translation system can be constructed given a parallel corpus only. For language
modeling we use the SRILM2 toolkit.
2 Available at http://www.speech.sri.com/projects/srilm/download.html.
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The second decoder is our simple monotone phrase-based decoder - SiMPaD.
The monotonicity means using the monotone reordering model, i.e. no phrase
reordering is permitted. In the decoding process we choose only one alignment
with the longest phrase coverage (for example if there are three phrases: p1, p2, p3

coverage three words: w1, w2, w3, where p1 = w1+w2, p2 = w3, p3 = w1+w2+w3,
we choose the alignment which contains phrase p3 only). A standard Viterbi
algorithm is used for the decoding. SiMPaD uses SRILM language models.

Data and Evaluation Criteria. The main resource for the statistical ma-
chine translation is a parallel corpus which contains parallel texts of the source
and the target language. The acquisition of such a corpus in the case of SS is
complicated by the absence of an official written form of both the CSE and the
SC. Therefore we used a Czech to Signed Czech (CSC) parallel corpus [3] for
training of decoders.

The CSC corpus contains 1130 dialogs from a telephone communication be-
tween customer and operator in a train timetable information center. The par-
allel corpus was created by semantic annotation of several hundred dialogs and
by adding the SC translation of all the dialogs. A SC sentence is written as
a sequence of CSE signs. The whole CSC corpus contains 16 066 parallel sen-
tences, 110 033 running words and 109 572 running signs, 4082 unique words
and 720 unique signs. Each sentence of the CSC corpus has assigned the writ-
ten form of the SC translation, a type of the dialog act, and its semantic
meaning in a form of semantic annotation. For example (we use English lit-
eral translation) for the Czech sentence: good day I want to know how me it
is going in Saturday morning to brno we have the SC translation: good day
I want know how go in Saturday morning to brno and for the part: good
day the dialog act: conversational domain=“frame” + speech act=“opening” and
the semantic annotation: semantics=“GREETING” . The dialog act: conversa-
tional domain=“task” + speech act=“request info and the semantic annotation:
semantics=“DEPARTURE(TIME, TO(STATION))” is assigned to the rest of
the sentence. The corpus contains also a handcrafted word alignment (added by
annotators during the corpus creation) of every Czech – SC sentence pair. For
more details about the CSC corpus see [3].

We use the following criteria for evaluation. The first criterion is Sentence
Error Rate (SER): It is a ratio of the number of incorrect sentence translations
to the number of all translated sentences. The second criterion is Word Error
Rate (WER): This criterion is adopted from ASR area and is defined as the
Levenshtein edit distance between the produced translation and the reference
translation in percentage (a ratio of the number of all deleted, substituted and
inserted produced words to the total number of reference words). The third
criterion is Position-independent Word Error Rate (PER): it is simply a
ratio of the number of incorrect translated words to the total number of reference
words (independent of the word order). The last criterion is BLEU score [4]:
it counts a modified n-gram precision for the output translation with respect to
the reference translation. A lower value of the first three criteria and a higher
value of the last one indicate better i.e. more precise translation.
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Experiment. Both decoders are trained on the CSC corpus. SiMPaD uses a
phrase table of handcrafted phrases (acquired from the handcrafted alignment
of the CSC corpus; a phrase translation probability is estimated by the relative
frequency [1]) and phrase-based language model (a basic unit of the language
model is a phrase instead of a word). Moses uses the phrase table of automatically
acquired phrases and the standard language model. The phrases were acquired
from Giza++ word alignment of the parallel corpus (the word alignment estab-
lished by Giza++ toolkit3) by some heuristics (we used default heuristics). There
are many parameters which can be specified in the training and decoding process
of Moses. Unless otherwise stated, we used the default values of parameters (for
more details see Moses’ documentation in [2]).

To improve results of translation we used two enhancements - a class-based
language model and post-processing method. As well as in the area of ASR, there
are problems with out-of-vocabulary words (OOV) in the automatic translation
area. We can translate only words which are in a translation vocabulary (we know
their translation into the target language). By the analysis of the translation
results we found that many OOV words are caused by missing a station or a
personal name. Because the translation is limited to the domain of dialogs in
the train timetable information center, we decided to solve the problem of OOV
words similarly as in work [5], where the class-based language model was used
for the real-time closed-captioning system of TV ice-hockey commentaries. The
classes of player’s names, nationalities and states were added into the standard
language model in this work. Similarly, we added two classes into our language
model - the class for all known station names: STATION and the class for all
known personal names: PERSON. Because the semantic annotation of the corpus
contains station and personal names, we can simply replace these names by
relevant class in training and test data and collect a vocabulary of all station
names for their translation (the personal names are always spelled).

The post-processing method includes two steps. Firstly, we can remove the
words which are omitted in the translation process (they are translated into ’no
translation’ sign respectively) from the resulting translation. In any case, to keep
these words in training data gives better results (more detailed translation and
language models). Secondly, we can substitute OOV words by a finger-spelling
sign, because the unknown words are finger spelled in the SC usually. The results
of a decoder comparison are in Table 1. The results of SiMPaD and Moses
decoder with the phrase-based and the standard trigram language model (suffix
LM(P)) are in the first and third column. The results of decoders with the class-
based language model and the post-processing method (suffix CLM(P) PP) are
in the second and forth column.

We compared the SiMPaD’s results with the state-of-the-art phrase-based
decoder Moses. We found that the SiMPaD’s results are fully comparable with
Moses’s results while SiMPaD is almost 5 times faster than the Moses decoder.
Hence, the SiMPaD is convenient for the real time translation, which is sufficient
for the TTSL system. We introduced the class-based language model and the

3 Available at http://www.isi.edu/∼och/GIZA++.html.
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Table 1. The results of SiMPaD and Moses decoder in Czech =⇒ Signed Czech trans-
lation

SiMPaD LMP SiMPaD CLMP PP Moses LM Moses CLM PP

SER[%] 44.84 ± 1.96 40.59 ± 2.06 45.30 ± 2.40 41.97 ± 2.20

BLEU 67.92 ± 1.93 73.43 ± 1.78 68.77 ± 1.72 73.64 ± 1.84

WER[%] 16.02 ± 1.08 14.23 ± 1.06 16.37 ± 1.02 14.73 ± 1.16

PER[%] 13.30 ± 0.91 9.65 ± 0.78 11.22 ± 0.82 8.67 ± 0.73

post-processing method which improved the translation results from about 8.1 %
(BLEU) to about 27.4 % (PER) of a relative improvement in the case of SiMPaD
decoder and from about 7.1 % (BLEU) to about 22.7 % (PER) of a relative
improvement in the case of Moses decoder (the relative improvement is measured
between the word-based model - LM(P) and the class-based model with the
post-processing - CLM(P) PP).

3 Conversion System

The conversion system is based on HamNoSys 3.0 notation. The notation is de-
terministic and suitable for the processing of the Sign Speech in a computer
system. The methodology of the notation allows precise and also extensible ex-
pression of the sign. However an editor should be used for faster composition of
correct selection of symbols to final string. Symbolic strings of notated signs are
stored in a vocabulary.

3.1 Analysis of Symbols and Trajectories for Isolated Sign

The synthesis process is based on key frames and trajectories. Firstly, our synthe-
sis system automatically carries out the analysis of symbolic string and generates
a tree structure composed from key frames. Then, the feature and animation tra-
jectories are created by the trajectory processing (see Figure 2).

The structure of the HamNoSys notation can be described by a context-free
grammar. The grammar is defined by four symbol groups G = (Vt; Vn; P ; S). The
inventory of terminal symbols Vt, non terminal symbols Vn, the set of parsing

PARSER
SYMBOLS

PROCESSING

TRAJECTORY

PROCESSING

rules symbols AVATAR model
HamAna

symbol

sign

trajectory

sign

Fig. 2. The schema of our conversion system HamAna. The sign in symbolic meaning
is transferred to parse tree. The symbol processing puts together the information from
each symbol and the trajectory processing generates the animation trajectories.
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the rule the description

T (001) � the symbol for hand shape � is generalized on the symbol T

HT1 (026) T MT the generalized hand shape T is modif ied by symbol MT

VHO (006) � HO2 � HO2 � the processing of orientation of left and right palm separately

HAMNOSYS (202) HH1 one of output rules, HAMNOSYS is the starting symbol

Fig. 3. The example of grammatical rules

rules P and starting symbol S were collected. The Vt symbols were directly
derived from the HamNoSys symbols, the auxiliary symbols Vn were chosen
according to the generalization of a HamNoSys notation structure and in the
relation to the parsing rules P . The parsing rules were created to cover all
HamNoSys notation variants. Example of 4 from all the 361 rules is in Figure 3.
The form of the rule is following: one left non terminal symbol, a number of
action and a right side of the rule (for example HT 1(026) → T MT , where
HT 1 is left non terminal symbol, (026) is number of rule action and T MT
is the right side). The right side is given by one or combination of Vt and Vn

symbols. The number indicates the action joined with the rule. There are 28 rule
actions for the symbol processing and 11 rule actions for the following trajectory
processing. We implemented Earley’s algorithm for the syntactic analysis. The
structurally correct notations are then represented by a tree structure.

For accepted symbolic string, we have the parse tree and also the path to each
leaf node. The path from a root of the tree to the leaf node of the particular
symbol is given by the sequence of rule actions. The processing of nodes is
carried out by several tree walks whilst the size of the tree is reduced. Each
node is described by two key frames to separate dominant and non dominant
hand. The structure of key frame is composed from specially designed items.
These items are read for all leaf nodes from a symbol definition file. The list of
all items and the example of definition file is depicted in Figure 4. Currently,
the definition file covers 138 HamNoSys symbols. In the next processing, the
key frames of the remaining nodes are joined and blended according to the rule
actions.

The feature trajectory is created from key frames as the time sequence of
feature frames in particular leaf nodes of the tree. The structure of a feature
frame is derived from the key frame structure and contains only items for the
static position of hand in space, the orientation of wrist and hand shape. The
feature trajectories are created by next tree walk. Due to the notation of a su-
perposition of notated movements, the relevant subtrees have to be marked by
parallel flags. To overcome this, only the start and end feature frame of leaf
nodes have to be precomputed. These frames are computed from the geome-
try of the animation model. In our approach, the location of hand is implicitly
given by a position of wrist join in 3D space. In the case of the precise contact
of dominant hand to other segments of animation model, the location of wrist for
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hamsym.dat

HAMSYM �

f ingor 180.0 90.0 0.0

HAMSYM �

locsegname hanim_l5

idxloc 1 1 1 1 1

w hichidxloc 2

distance 0.4

HAMSYM �

typemov zigzag

turn 0.0

amplit 1.0

the location the pointer body segment

the index of pointer segment

the location segment name

the array of location segment and indexes

distance from location segment

the motion vector of relative translation (x,y,z)

the type of motion

the size of amplitude

the amplitude gain

the turn of motion amplitude

the angles of circle sector

the orientation the orientation of w rist (�,� ,�)

the hand shape the vector of hand shape (dim 21)

the angles of three times finger flexion

the mask of f inger selection

the shape of thumb

Fig. 4. On left is the list of all items. The relevant subsets are stored for each HamNoSys
symbol. On right is the example of the stored items in the definition file: the orientation
of hand, location on the body and the modifier of the direct movement.

the dominant hand is recomputed in the relation with the relevant pointer body
segment. For this purpose, the algorithm computes firstly the location of non
dominant arm thereafter the location of the dominant arm.

The following step of synthesis algorithm transfers the start and end frames
to the relevant parent nodes. The transfer is controlled by the parallel flags and
rule actions of the HamNoSys repetition modalities. In this state of the algo-
rithm, the upper half-body movements or the some random motions of head
have to be applied. The duration of trajectories is determined by number of
frames. The frequency of frames is implicitly set to 25 frames per second. In
order to get total duration of processed sign, the number of feature frames is
inserted into leaf nodes and transferred into the root node. Here, the identi-
cal duration of trajectories in two parallel subtrees has to be taken into ac-
count.

The feature trajectories are computed for leaf nodes of the reduced tree ac-
cording to type of a motion and other items in the relevant key frames. Next
processing transfers these feature trajectories into the root node. The trans-
ferred trajectories are concatenated, merged, repeated or inversed according to
rule actions of the trajectory processing. The trajectory for the dominant arm
in root node is now complete and the trajectory for the non dominant arm
is either empty or incomplete. If the symbols of a sign symmetry are notated
then the trajectory for the non dominant arm is completed from the trajectory
of the dominant arm or from the initial values. The final feature trajectories
in the root node are transformed into the animation trajectories by an inverse
kinematics technique to control the joints of animation model. The analysis of
symbols allows the computation of trajectories only for hands and the upper
half-body. Trajectories for the lip articulation and face gestures are produced by
the ”talking head” system separately.
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3.2 Talking Head System

Trajectories for face gestures and also for articulation of lips, a tongue and jaws
are created by visual synthesis carried out by the talking head subsystem. This
visual synthesis is based on concatenation of phonetic units. Any word or phrase
which represents an isolate sign in textual form, is here processed as a string
of successive phones. The lip articulatory trajectories are concatenated by the
visual unit selection method [6]. This synthesis method uses an inventory of
phonetic units and the regression tree technique. It allows precise coverage of
coarticulation effects. In the inventory of units, several realizations of phoneme
are stored. Our synthesis method assumes that the lip and tongue shape is
described by a linear model. The realization of a phoneme is described by 3
linear components for lip shape and 6 components for a tongue shape. The lip
components represent a lip opening, a protrusion and an upper lip raise. The
tongue components consist of a jaw height, a dorsum raise, a tongue body raise,
a tip raise, a tip advance and a tongue width. The synthesis algorithm performs a
selection of an appropriate phoneme candidate according to the phoneme context
information. This information is built from a triphone context, the occurrence
of a coarticulation resistant component (of the lip or the tongue) in adjacent
phonemes and also from the time duration of neighboring speech segments. Final
trajectories are computed by a cubic spline interpolation between the selected
phoneme realizations.

These facial trajectories should be time-aligned with the timing of acoustic
form of the relevant sign. This form is produced by an appropriate TTS system.
The synthesis of face gesture trajectories is based on the concatenation and the
combination of the neutral face expression and one of the 6 basic face gestures:
happiness, anger, surprise, fear, sadness and disgust.

3.3 Synchrony of Facial Trajectories and Continuous Sign Speech
Synthesis

The synchrony of the manual and non-manual components is crucial in the syn-
thesis of continuous Sign Speech and ensures overall intelligibility. An asynchrony
is caused by the different speech rate of the spoken speech and the Sign Speech.
We designed an effective solution for Signed Czech. The synchrony method com-
bines the basic concatenation technique with the time delay processing at the
level of words. Firstly, for each isolated sign the animation trajectories from the
analysis of symbols described in 3.1 and trajectories from the talking head sys-
tem described in 3.2 are generated. The time delay processing determines the
duration of both trajectories and selects the longest variant. The following step
of processing evaluates an interpolation time for the concatenation of adjacent
isolated signs in the synthesized utterance with regard to the longest variant.
Thus added interpolation time ensures the fluent shift of a body pose. We select
the simple linear interpolation of the frames on the boundaries of concatenated
signs. The interpolation of a hand shape and its 3D position is determined by
weight average, the finger direction and palm orientation is interpolated by the
extension to the quaternion.
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3.4 Animation Model

Our animation algorithm employs a 3D geometric animation model of the avatar
in compliance with the H-Anim standard4. Our model is composed of 38 joints
and body segments. These segments are represented by textured triangular sur-
faces. The setting of the correct shoulder and elbow rotations from a position of
the wrist is solved by the inverse kinematics5. There are 7 degrees of a freedom
for each limb. The settings of the remaining joints and local deformation of the
triangular surfaces allows the animation of an arbitrary avatar pose. The local
deformation of triangular surfaces is primarily used for the animation of the face
and the tongue model. The surfaces are deformed according to animation schema
based on the definition of several control points and splines functions [7]. The
rendering of the animation model is implemented in C++ code and OpenGL.
The animation model is shown in Figure 5.

Fig. 5. The animation model for three signs: wire-frame topology, textured and blended
rendering

4 Perceptual Evaluation

Two initial tests on an intelligibility of synthesized Sign Speech have been per-
formed. The goal has been to evaluate a quality of our Sign Speech synthesizer.
Two participants who are experts in the Sign Speech served as judges. We used
the vocabulary of about 130 signs selected from the CSC corpus. We completed
several video records of the avatar animation and also of the signing person.
The video records of the signing person were taken from the electronic vocab-
ulary [8]. The capturing of video records of our animation was prepared under
two conditions.

4.1 Isolated Signs

The equivalence test was aimed at the comparison of animation movements of
isolated signs with the movements of the signing person. Video records of 20
4 Available at www.h-anim.org.
5 Available at cg.cis.upenn.edu/hms/software/ikan/ikan.html.



190 Z. Krňoul et al.

pairs of randomly selected isolated signs were completed. The frontal view of
the avatar model and the signing person was used in this test. The participants
evaluated this equivalence by marks from 1 to 5. The meaning of the marks was:

– 1 totally perfect; the animation movements are equivalent to the signing
person

– 2 the movements are good, the location of the hand, shapes or speed of the
sign are a little different but the sign is intelligible

– 3 the sign is difficult to recognize; the animation includes mistakes
– 4 incorrectly animated movements
– 5 totally incorrect; it is a different sign

The results are shown in the left panel of Figure 6. The average mark of
participant 1 is 2.25 and of participant 2 is 1.9. The average intelligibility is 70%
(marks 1 and 2 indicate an intelligible sign). There was 65% mark agreement
between participants. The analysis of signs with lower marks shows that the
majority of mistakes are caused by the symbolic notation rather than inaccuracy
in the conversion system. Thus, it is highly important to obtain as accurate
symbolic notation of isolated signs as possible.

4.2 Continuous Speech

We created 20 video animation records of short utterances. The view of the
avatar animation here was partially from the side. The participants judged the
whole Sign Speech utterance. Subtitles (text representation of each sign) were
added to the video records. Thus, the participants knew the meaning of the
utterance and determined the overall intelligibility. The participants evaluate
the intelligibility by marks from 1 to 5. The meaning of marks was:

– 1 the animation shows the signs from subtitles
– 2 the well intelligible utterance
– 3 the badly intelligible utterance
– 4 the almost unintelligible utterance
– 5 the totally unintelligible utterance

The results are shown in the right panel of Figure 6. All the utterances were
evaluated by mark 1 or 2. On average, the animation of 70 % utterances shows
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Fig. 6. Perceptual evaluation, left: isolated signs, right: continuous Sign Speech
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the signs from subtitles. The results indicate that the synthesis of continuous
speech is intelligible. The concatenation and synchrony method of isolated signs
is sufficient.

5 Conclusion

The translation and conversion subsystems were introduced. The translation
system is the phrase-based translation system which uses some heuristics (the
monotone reordering and the longest phrase coverage) to speed up the translation
process. The conversion system is based on the HamNoSys symbolic notation,
which is capable to express the space configuration of each sign. The method of
conversion the symbolic notation of sign to appropriate animation was presented.

The perceptual tests reveal that the synchrony on the level of word preserves
the intelligibility for continuous Sign Speech. However the intelligibility of iso-
lated signs highly depends on symbolic notation of particular signs in the vocab-
ulary. Thus, it is necessary to concentrate on the acquisition of precise symbolic
notation of isolated signs in future work.

References

1. Koehn, P., et al.: Statistical Phrase-Based Translation. In: HLT/NAACL (2003)
2. Koehn, P., et al.: Moses: Open Source Toolkit for Statistical Machine Translation.

In: Annual Meeting of the Association for Computational Linguistics (ACL), demon-
stration session, Prague, Czech Republic (June 2007)

3. Kanis, J., et al.: Czech-Sign Speech Corpus for Semantic Based Machine Translation.
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Abstract. Prosody has been actively studied as an important knowl-
edge source for speech recognition and understanding. In this paper, we
are concerned with the question of exploiting prosody for language mod-
els to aid automatic speech recognition in the context of meetings. Using
an automatic syllable detection algorithm, the syllable-based prosodic
features are extracted to form the prosodic representation for each word.
Two modeling approaches are then investigated. One is based on a fac-
tored language model, which directly uses the prosodic representation
and treats it as a ‘word’. Instead of direct association, the second ap-
proach provides a richer probabilistic structure within a hierarchical
Bayesian framework by introducing an intermediate latent variable to
represent similar prosodic patterns shared by groups of words. Four-
fold cross-validation experiments on the ICSI Meeting Corpus show that
exploiting prosody for language modeling can significantly reduce the
perplexity, and also have marginal reductions in word error rate.

1 Introduction

Prosody has long been studied as a knowledge source for speech understanding,
and has been successfully used for a variety of tasks, including topic segmenta-
tion [1], disfluency detection [2], speaker verification [3], and speech recognition
[4,5,6].

Recently there has been an increasing research interest in multiparty con-
versations, such as group meetings. Speech in meetings is more natural and
spontaneous than read or acted speech. The prosodic behaviours for speech in
meetings are therefore much less regular. Can prosody aid the automatic pro-
cessing of multiparty meetings? Shriberg et al. [2] gave the answer ‘yes’ to this
question, from the evidence of successfully exploiting prosodic features for pre-
dicting punctuation, disfluencies, and overlappings in meetings. It has also been
noted that prosodic features can serve as an efficient non-lexical feature stream
for tasks such as dialogue acts (DA) segmentation and classification, speech sum-
marization, and topic segmentation and classification in the meetings domain.

This paper is concerned with the question of exploiting prosody to aid auto-
matic speech recognition (ASR) in the context of meetings. Three essential com-
ponents in a state-of-the-art ASR system, namely the acoustic model, language
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model (LM), and lexicon, can all potentially serve to accommodate prosodic
features. In this paper we are interested in exploiting prosodic features in lan-
guage models for ASR in meetings.

The goal of a language model is to provide a predictive probability distribution
for the next word conditioned on the strings seen so far, i.e., the immediately
preceding n−1 words in a conventional n-gram model. In addition to the previous
words, prosodic information associated with the audio stream, which is parallel
to the word stream, can act as a complementary knowledge source for predicting
words in LMs. This understanding is the initial motivation for this work.

Due to the large vocabulary size in LMs (typically greater than 10,000 words),
incorporating prosodic information in language models is more difficult than in
other situations such as DA classification which has a much smaller number
of target classes (typically several tens). To exploit prosody for LMs, a central
question is how the relationship between prosodic features F and the word types
W , P (W |F ), may be modeled. In this paper, two models will be investigated,
namely the factored language model (FLM) [7] and the hierarchical Bayesian
model (HBM) [8]. In the FLM-based approach, conditional probabilities P (W |F )
are directly estimated from the co-occurrences of words and prosody features via
maximum likelihood estimation (MLE). The HBM-based approach provides a
richer probabilistic structure by introducing an intermediate latent variable—in
place of a direct association between words and prosodic features—to represent
similar prosodic patterns shared by groups of words. This work is characterised
by an automatic and unsupervised modeling of prosodic features for LMs in two
senses. First, the prosodic features, which are syllable-based, are automatically
extracted from audio. Second, the association of words and prosodic features is
learned in an unsupervised way.

The rest of this paper is organized as follows. The next section reviews some
related work on exploiting prosody for ASR. The ICSI Meeting Corpus, used
throughout this paper, is described in Sect.3. The extraction of prosodic features
is discussed in Sect.4. Section 5 focuses on the modeling approaches, including
FLM-based and HBM-based methods. Experiments and results are reported in
Sect.6, followed by a discussion in the final section.

2 Related Work

It is well accepted that humans are able to understand prosodic structure without
lexical cues. Sub-lexical prosodic analysis [9] attempts to mimic this human
ability using syllable finding algorithms based on band pass energy. Prosodic
features are then extracted at the syllable level. The extraction of syllable-based
prosodic features is attractive, because the syllable is accepted as a means of
structuring prosodic information. This approach was verified on DA and hotspot
categorization [9], which encourages us to utilize syllable-based prosodic features
in LMs for ASR.

A basic approach to incorporate prosodic features in acoustic models for ASR
uses “early integration”, in which the prosodic features are appended to the
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standard acoustic features [10]. Early work to utilize prosody in language
models used prosodic features to evaluate possible parses for recognized words,
which in turn would be the basis for reordering word hypotheses [11]. More
recently, approaches that integrate prosodic features with LMs have emerged,
in which LMs are conditioned on prosodic evidence by introducing intermedi-
ate categories. Taylor et al. [12] took the dialogue act types of utterances as
the intermediate level, by first using prosodic cues to predict the DA type for
an utterance and then using a DA-specific LM to constrain word recognition.
Stolcke et al. [4] instead used prosodic cues to predict the hidden event types
(filled pause, repetition, deletion, repair) at each word boundary with hidden
event n-gram model, and then conditioned the word portion of the n-gram on
those hidden events. Chan et al. [6] proposed to incorporate prosody into LMs
using maximum entropy. However, the prosodic features they used were derived
from manual ToBI transcriptions. An example of using prosody in the lexicon
was provided by Chen et al. [5], where prosodic features, such as stress and
phrase boundary, were included in the vocabulary. Each word had different vari-
ations corresponding to stress and whether or not it precedes a prosodic phrase
boundary. This approach attempted to capture the effects of how prosodic fea-
tures affect the spectral properties of the speech signal and the co-occurrence
statistics of words.

Most research on using prosodic features for ASR has been applied to small
and task-oriented databases. The goal of effectively using prosody for large-
vocabulary speech recognition, such as recognition of meeting speech, still re-
mains elusive. There has been little work in this direction in the meeting domain.
One reason for this is due to the difficulty of modeling the relationship between
symbolic words and normally non-symbolic prosodic features. Therefore, to find
an approximate prosodic representation for each word in the vocabulary is one
way to use prosodic features for ASR.

Realizing the difficulty of modeling prosody via intermediate representations,
Shriberg et al. proposed direct modeling of prosodic features [13]. In this ap-
proach, prosodic features are extracted directly from the speech signal. Machine
learning techniques (such as Gaussian Mixture Models, and decision trees) then
determine a statistical model to use prosodic features in predicting the target
classes of interest. No human annotation of prosodic events is required in this
case. However, using prosodic features to predict very large number of target
categories like words will again fail in capturing the prosodic discriminabilities.

3 Meeting Corpus

The experiments reported here were performed using the ICSI Meeting Corpus
[14], which is a corpus of 75 naturally-occurring, unrestricted, and fairly un-
structured research group meetings, each averaging about an hour in length.
We performed our experiments using a four-fold cross-validation procedure in
which we trained on 75% of the data and tested on the remaining 25%, rotating
until all the data was tested on. The corpus was divided into four folds, first by
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Table 1. The summary of the four-fold cross-validation setup on the ICSI Meeting
Corpus used in this paper

Fold Number of Sentences Number of Tokens

0-fold 27,985 209,766

1-fold 27,981 208,554

2-fold 27,968 208,294

3-fold 27,975 205,944

ordering all the sentences in sequence, and then for each fold sequentially se-
lecting every fourth sentence. After further removing the sentences that are too
short in length to extract prosodic features, this procedure resulted in the data
set summarised in Table 1.

4 Prosodic Feature

A notable aspect of the prosodic features used here is that they are syllable-
based. It is reasonable to address prosodic structures at the syllable level, because
prosodic features relating to the syllable reflect more clearly perceptions of ac-
cent, stress and prominence. The syllable segments were automatically detected
based solely on the parallel acoustic signals using an automatic syllable detection
algorithm. The framework for the extraction of syllable-based prosodic features
is shown in Fig.1, which follows an approach to automatic syllable detection sug-
gested by Howitt [15], which in turn was originated in work by Mermelstein [16].

1. Front-end Processing. The speech signal was first framed using a 16 ms
Hamming window with a shift period of 10 ms. The raw energy before win-
dowing and pre-emphasis was computed for each frame and saved in log
magnitude representation for subsequent silence detection. A 256-point FFT
was used to compute the power spectrum.

2. Silence Detection. The raw energy data was smoothed using a 6th-order
low-pass 50 Hz filter. Each frame was classified into either speech or silence
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Feature

Extraction
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Syllable
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Prosodic
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Waveform
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Segment Syllabic
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Fig. 1. The framework of the extraction of syllable-based prosodic features



196 S. Huang and S. Renals

based solely on whether or not the log frame energy was above a threshold.
A running window consisting of 10 consecutive frames was used to detect the
onsets of speech and silence. The detected speech segments, which were fur-
ther extended by 5 frames at both sides, were fed into the following syllable
detection.

3. Intensity Feature Extraction. Asinglemeasure of intensitywas computed,
following Howitt’s adjusted features [15]. A 300–900 Hz band-pass filter was
used to filter out energy not belonging to vowels. By a weighted summation
(converted to magnitude squared forms) of the spectral bins within 300–900
Hz frequencies from the spectrogram, an intensity track (converted back to
decibels) was computed for syllable detection, which again was smoothed by a
low-pass 50 Hz filter to help reduce small peaks and noise.

4. Automatic Syllable Detection. The recursive convex hull algorithm [16],
which is a straightforward and reliable syllable detection algorithm, was used
to find the nuclei by detecting peaks and dips in the intensity track computed
in the above step. The syllables were then obtained by extending the nuclei
on both sides, until a silence or a boundary of adjacent nuclei is detected.

5. Prosodic Feature Extraction. Four prosodic features were extracted for
each syllable consisting of the duration of syllable, the average energy, the
average F0, and the slope of F0 contour. F0 information was obtained using
the ESPS get f0 program.

We ran vector quantization (VQ), with 16 codewords (labeled ‘s0’ to ‘s15’) over all
the 892,911 observations of syllable-based prosodic features in the ICSI Meeting
Corpus. Before running VQ, each feature was normalized to unit variance.

The syllables belonging to an individual word were obtained by aligning the
word with the syllable stream according to a forced time alignment at the word
level, and selecting those syllables whose centres were within the begin and
end times of words. By concatenating relevant VQ indices for syllables, we
obtained the symbolic representations of prosodic features at the word level,
which can then serve as potential cues for language modeling. For example, the
prosodic representation for word ‘ACTUALLY’ might be the symbol ‘s10s12s6’,
or ‘s10s15s6’ in other contexts.

5 Modeling Approach

5.1 Factored Language Model

One straightforward method for modeling words and prosodic features is to use
MLE based on the co-occurrences of words W and the prosodic representations
F , i.e., training a unigram model P (W |F ) = Count(F,W )

Count(F )
. This unigram model

can then be interpolated with conventional n-gram models. More generally, we
can use the FLM [7] to model words and prosody deterministically. The FLM,
initially developed to address the language modeling problems faced by mor-
phologically rich or inflected languages, is a generalization of standard n-gram
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language models, in which each word wt is decomposed into a bundle of K
word-related features (called factors), wt ≡ f1:K

t = {f1
t , f1

t , . . . , fK
t }. Factors

may include the word itself. Each word in an FLM is dependent not only on
a single stream of its preceding words, but also on additional parallel streams
of factors. Combining with interpolation or generalized parallel backoff (GPB)
[7] strategies, multiple backoff paths may be used simultaneously. The FLM’s
factored representation can potentially accommodate the multimodal cues, in
addition to words, for language modeling—in this case the prosodic representa-
tions. This configuration allows more efficient and robust probability estimation
for those rarely observed word n-grams.

Supposing the word wt itself is one of the factors {f1
t , f1

t , . . . , fK
t }, the joint

probability distribution of a sequence of words (w1, w2, . . . , wT ) in FLMs can
be represented as the formalism shown in (1), according to the chain rule of
probability and the n-gram-like approximation.

P (w1, w2, . . . , wT ) = P (f1:K
1 , f1:K

2 , . . . , f1:K
T )

=
T∏

t=1

P (f1:K
t |f1:K

t−1 , f1:K
t−2 , . . . , f1:K

1 )

≈
T∏

t=1

P (wt|f1:K
t−n+1:t−1) (1)

There are two key steps to use FLMs. First an appropriate set of factor def-
initions must be chosen. We employed two factors: the word wt itself and the
syllable-based prosodic representation ft, as shown in Fig.2(A). Second it is nec-
essary to find the suitable FLM models (with appropriate model parameters and
interpolation/GPB strategy) over those factors. Although this task can be de-
scribed as an instance of the structure learning problem in graphical models, we
heuristically designed the model structure for FLMs. It is convenient to regard
this FLM-based model as an interpolation of two conventional n-gram models
P (wt|wt−1, wt−2) and P (wt|wt−1, ft):

PFLM(wt|wt−1, wt−2, ft) = λFLMP (wt|wt−1, wt−2)+(1−λFLM)P (wt|wt−1, ft) (2)

Figure 2(B) shows the parallel backoff graph used in the experiments for factors
wt and ft. We perform the interpolation in a GPB framework, as depicted in
Fig.2, manually forcing the backoff from P (wt|wt−1, wt−2, ft) to two parallel
paths by setting a very large value of gtmin for P (wt|wt−1, wt−2, ft).

5.2 Hierarchical Bayesian Model

We argue that it is essential but difficult to find intermediate symbolic repre-
sentations to associate words and low-level prosodic features for language mod-
eling. In this paper, we have categorized syllable-based prosodic features into 16
classes, and represented the prosodic features for each word as a concatenation
of indices for syllables belonging to that word. The FLM-based approach uses
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Fig. 2. (A) A directed graphical model representation for the factor configuration in a
FLM over factors including words wt, the prosodic representations ft. (B) The gener-
alized parallel backoff graph for wt and ft used in the experiments.

this prosodic information by directly associating word and prosodic represen-
tations. One limitation of this FLM-based approach is that there may be too
many varieties of prosodic representations for individual words, due to the er-
rors introduced by the automatic syllable detection and forced alignment. For
example, the word ‘ABSOLUTELY’ in the ICSI Meeting Corpus has more than
100 different prosodic representations. Language models trained via MLE us-
ing such prosodic representations will be more likely to overfit to the training
data. Rather than the direct association of words and prosodic representations,
we introduce a latent variable between word and prosody and assume a gen-
erative model that generates words from prosodic representations through the
latent variable. This probabilistic generative models is investigated within the
framework of hierarchical Bayesian models [8].

Topic models have recently been proposed for document modeling to find the
latent representation (topic) connecting documents and words. Latent Dirichlet
allocation (LDA) [17] is one such topic model. LDA is a three-level hierarchical
Bayesian model, in which each document is represented as a random mixture
over latent topics, and each topic in turn is represented as a mixture over words.
The topic mixture weights θ are drawn from a prior Dirichlet distribution:

P (θ|α) =
Γ (

∑K
i=1 αi)∏K

i=1 Γ (αi)
θα1−1
1 . . . θαK−1

K (3)

where α = {α1, . . . , αK} represents the prior observation count of the K latent
topics with αi > 0. The LDA model is based on the “bag-of-words” assumption,
that is, words in a document exchangeably co-occur with each other according to
their coherent semantic meanings. In this sense, LDA can be considered as a prob-
abilistic latent semantic analysis model. However what if we assume that words
in a document exchangeably co-occur with each other according to their coherent
prosodic patterns? This is the intuition of our use of LDA for the probabilistic
association of words and prosody, which we call the prosody-topic model.
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Fig. 3. The graphical model representation for the prosody-topic model (right) and
its interaction with n-gram model (left), where shaded nodes denote observed random
variables, while unshaded ones denote latent variables or parameters. The boxes are
‘plates’ representing the replications of a corresponding substructure.

In a prosody-topic model, a document in the corpus is composed by including
all those words that have the same prosodic representation (i.e., ‘s10s12s6’).
The prosodic representation is then served as the author of that document. If
we apply LDA over this corpus, we can extract the latent ‘topics’ connecting
words and prosodic representations. Each topic is expected to have coherent
prosodic patterns. Considering our prosodic representations in this paper, for
example, words in one individual topic are expected to have the same number
of syllables whose pronunciations are similar. Unlike LDA, we need to explicitly
retain the prosodic representations in the prosody-topic model. On the other
hand, if we regard the prosodic representations as the ‘authors’ for corresponding
documents, the prosody-topic model leads to the author-topic model [18], in
which each document has only one unique author.

In short, the general idea of the prosody-topic model is that each prosodic rep-
resentation is represented by a multinomial distribution over latent topics, and
each topic is represented as a multinomial distribution over words. Prosody thus
serves the same role as semantics, being the guideline to cluster co-occurring
words in a document. The goal of a prosody-topic model is to learn the dis-
tribution of words for each topic, which therefore finds the latent representa-
tions association the word and prosodic representations. The graphical model
for prosody-topic model is shown in Fig.3, and the generative process for each
document d can be described as follows.

1. Select the unique prosodic representation (author) label f for document d.
2. Choose topic proportions θ|{f, θ1:F } for document d according to f , each

θf ∼ Dirichlet(α)
3. For each of the Nd words wn in document d:

(a) Choose a topic zn|θ ∼ Mult(θ).
(b) Choose a word wn|{zn, φ1:K} ∼ Mult(φzn

), φzn
∼ Dirichlet(β).
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Since each document only has a single author, the probability of words wt given
prosodic representations ft in a prosody-topic model can be easily obtained by
integrating out latent topics, as shown in (4):

PHBM(wt|ft) =
K∑

k=1

P (tk|ft)P (wt|tk) =
K∑

k=1

θfttk
φtkft (4)

where tk is one of the K topics, θfttk
and φtkft can be learned by approximate

inference methods, such as variational EM or Gibbs sampling. This unigram-like
probability can be interpolated with conventional n-gram models:

PHBM(wt|wt−1, wt−2, ft) = λHBMP (wt|wt−1, wt−2) + (1 − λHBM)PHBM(wt|ft) (5)

6 Experiment and Result

We evaluated the FLM- and HBM-based approaches on the 4-fold cross-validation
ICSI Meeting Corpus as described in Sect.3, in terms of perplexity (PPL) and word
error rate (WER) respectively.

The FLM models were trained using the SRILM [19] toolkit1, which has an
extension for FLMs. Some modifications were made to the FLM toolkit regarding
the manner of dealing with some special symbols such as ‘<s>’, ‘</s>’, and
‘NULL’, e.g., we manually set P (wt|wt−1, wt−2, NULL) = P (wt|wt−1, wt−2), and
scored the end-of-sentence ‘</s>’ in perplexity calculations to account for the
large number of short sentences in the meeting corpus. The FLM models share a
common closed vocabulary of 50,000 word types with the AMI-ASR system [20].
The smoothing methods and parameters for FLM models are shown in Fig.2.

The prosody-topic models were trained using a publicly available Matlab topic
modeling toolbox2. The algorithm for inference is Gibbs sampling [21], a Markov
chain Monte Carlo algorithm to sample from the posterior distribution. We chose
the number of topics K = 100, and ran the Gibbs sampling algorithm for 2500
iterations, which took around one hour to finish the inference on a 3-fold ICSI
data. Instead of automatically estimating the hyperparameters α and β, we fixed
these two parameters to be 50/K and 0.01 respectively, as in [18].

The PPL results were obtained by successively testing on the specific fold with
the language model trained on the other three folds. The interpolation weights
λFLM and λHBM were both set to 0.5. Table 2 shows the PPL results on the
4-fold cross-validation ICSI Meeting Corpus. Both FLM-based and HBM-based
approaches produce some reduction in PPL, especially the HBM-based approach
has over 10% relative reduction in PPL than the baseline trigram model. One
interesting thing we found during analysing the PPL results sentence-by-sentence
is that those having higher probabilities than baseline trigrams normally have
reasonable prosodic representations for words, i.e., representing the right number
of syllables in a word.
1 http://www.speech.sri.com/projects/srilm/
2 http://psiexp.ss.uci.edu/research/programs data/toolbox.htm
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Table 2. PPL results for 4-fold cross-validation experiments. BASELINE-3G denotes
the baseline trigram results using the FLM toolkit. FLM-3G-F denotes the results for
the FLM-based model, while HBM-3G-F for the HBM-based prosody-topic model.

TRAIN-TEST BASELINE-3G FLM-3G-F HBM-3G-F

123 – 0 78.4 73.6 70.5

023 – 1 78.9 73.9 70.7

013 – 2 78.3 73.4 70.1

012 – 3 78.3 73.3 70.8

AVERAGE 78.5 73.5 70.5

Table 3. Word error rate results, which share the same notations as in Table 2, except
that the BASELINE-2G column represents the baseline results from the first-pass
AMI-ASR decoding using an interpolated bigram model.

TRAIN-TEST BASELINE-2G BASELINE-3G FLM-3G-F HBM-3G-F

123–0 29.8 29.5 29.2 29.1

023–1 29.6 29.3 29.1 29.0

013–2 29.5 29.2 29.0 28.9

012–3 29.4 29.2 29.1 29.0

AVERAGE 29.6 29.3 29.1 29.0

Table 3 shows the WER results of n-best rescoring on the ICSI Meeting Cor-
pus. It should be noted that the BASELINE-2G WER results were obtained
during the first-pass decoding of the AMI-ASR system using an interpolated
bigram LM trained on seven text corpora including Hub4, Switchboard, ICSI
Meeting, and a large volume (around 1GB in size) of web data. The lattices
were generated using this interpolated bigram LM. By retaining the time in-
formation for candidate words, the lattices were then used to produce n-best
lists with time stamps for subsequent rescoring experiments via the lattice-tool
program in the SRILM toolkit. In our experiments, the 500-best lists were pro-
duced from the lattices, which were then aligned with the syllable streams to
get prosodic representation for each word, and finally reordered according to
scores of different interpolated LMs to search for the best hypothesis. Marginal
reductions in WER were observed in our experiments.

7 Discussion and Future Work

In this paper we have investigated two unsupervised methods to exploit syllable-
based prosodic features in language models for meetings. Experimental results
on the ICSI Meeting Corpus showed our modeling approaches, both FLM-based
and HBM-based, have significant reductions in PPL and marginal reductions in
WER. The limited gains in WER may be partly caused by the following reasons.
First, there are inevitably some errors in automatic syllable detection. It is hard
for us to carry out evaluations on our syllable detection algorithm because of the
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lack of annotated data with syllable information. Second, additional errors are
introduced by the forced alignment due to the overlapping cross-talk in meetings,
which occasionally assigned an unreasonable number (i.e., more than 10) of
syllables to a simple word. Third, the lattices were generated by an interpolated
bigram model trained on a large corpus. This might prevent the recovery of more
probable hypotheses from those n-best lists produced by a generalized LM, using
specific LMs only trained on ICSI meeting data for rescoring.

Considering the two modeling approaches, we are more interested in the HBM-
based method. Bayesian language models [22], which provide an internally coher-
ent probabilistic models and fit well in the hierarchical Bayesian model frame-
work, have been proved to have comparable performance to the conventional n-
gram models. In future, we will consider more tighter incorporation rather than
simple interpolation, i.e., investigating the prosody-topic model and (Bayesian)
language models in one united generative model within the hierarchical Bayesian
framework. Moreover, meeting-specific cues will be taken into consideration for
the prosody-topic model. For example, prosody encodes some information for
DAs. DA in meetings normally has well-defined types. It is interesting to ex-
tend the prosody-topic model by investigating the relationship between word,
prosody, and DA in one generative model.
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Abstract. The use of large speech corpora in example-based approaches
for speech recognition is mainly focused on increasing the number of ex-
amples. This strategy presents some difficulties because databases may
not provide enough examples for some rare words. In this paper we
present a different method to incorporate the information contained in
such corpora in these example-based systems. A multilayer perceptron
is trained on these databases to estimate speaker and task-independent
phoneme posterior probabilities, which are used as speech features. By
reducing the variability of features, fewer examples are needed to prop-
erly characterize a word. In this way, performance can be highly improved
when limited number of examples is available. Moreover, we also study
posterior-based local distances, these result more effective than tradi-
tional Euclidean distance. Experiments on Phonebook database support
the idea that posterior features with a proper local distance can yield
competitive results.

Keywords: Speech Recognition, Template Matching, Posterior Features,
KL-divergence, Bhattacharyya, Multi-Layer Perceptron.

1 Introduction

Hidden Markov models (HMMs) constitute the dominant approach for auto-
matic speech recognition (ASR) systems. Their success is mainly based on their
efficient algorithms for training and testing. However, these algorithms rely on
some assumptions about data that do not hold for speech signals, such as piece-
wise stationary or independence of the feature vectors given a state. Template
matching (TM) is a different approach for ASR that relies on the fact that a
class can be described by a set of examples (templates). Since templates are real
utterances, they can better model the dynamics of the trajectories generated by
the speech features compared with HMM states in currently used monophone or
triphone models. Moreover, TM is preferred in those cases where simplicity and
flexibility for training and testing must be considered.

As a non-parametric appraoch,TMrequiresmore training data thanparametric
models, such as HMM-based systems, to obtain comparable performance. Given
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the increase of large speech corpora and computational resources, TM has recently
drawn new attention. Investigation on this approach has been focused on increas-
ing the number of templates [1,2,3] and, hence, improving its generalization ca-
pabilities. Since no speech corpora can guarantee to provide many examples for
each word, sub-word units are typically used to ensure that a large enough num-
ber of templates is available for each possible word. Pronunciationdictionaries are,
in this case, needed for concatenating these sub-word units into words. However,
pronunciation of the words is not always easy to obtain, e.g., proper names.

We propose a different method to use the information contained in large speech
corpora.Traditional features used in TM are based on short-term spectrum. These
features contain linguistic information but also information about the gender1 and
the environment, i.e., they are speaker and task-dependent. In this work, we inves-
tigate the use of posterior probabilities of subword units as speech features. These
posteriors can be estimated from a multilayer perceptron (MLP) which has been
trained on large speech corpora. In this way, the MLP can capture the informa-
tion contained on large speech corpora to generate speaker and task-independent
features. Given the discriminative training procedure of the MLP and the long
acoustic context used as input, posterior features are known to be more stable
and more robust to noise than spectral-based features [4]. Since these features only
contain, in theory, linguistic information, fewer templates are required to repre-
sent a word. Hence, in those applications where the number of available templates
is few, we can expect to improve the performance. Posteriors estimates from the
MLP outputs have already been successfully applied as features for ASR using
HMM/GMM as acoustic model, system known as Tandem [4,5].

TM-based approaches traditionally use Euclidean or Mahalanobis distance
as local similarity measure between features. These distances implicitly assume
that features follow a Gaussian distribution. This assumption does not hold when
using posterior distributions as features. Since posterior features are probability
distributions over the space of subword units, more appropriate distances can
be considered. In this work, we investigate local distances between frames that
take into account the discriminative properties of posterior features.

This work is an extension of a previous experiment where we already applied
posterior features to a TM-based ASR system [6]. On that first experiment, pos-
terior features were not task-independent because the data to train the MLP
belonged to the same database as the test set. Kullback-Leibler (KL) divergence
was applied as local distance for being a natural distance between distributions.
In this work, the MLP is trained on a large speech corpus and used for a dif-
ferent recognition task. We also show that other types of local distances can be
successfully applied to posterior features which obtain similar performance to
KL-divergence but are faster to compute.

This paper is summarized as follows: Section 2 introduces the TM approach for
speech recognition, Section 3 presents the posteriors features, Section 4 describes
the local distances investigated in this work, Section 5 presents the experiments
and results and finally, Section 6 draws some conclusions.

1 For instance, speaker recognition systems use spectral-based features as inputs.
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2 Template Matching

TM is a non-parametric classifier that relies on the idea that a class w can be
identified by a set of Nw examples (templates) {Yw

n }Nw
n=1 belonging to that class.

Unlike parametric models, TM directly uses all training data at the decoding
time and no explicit assumption is made about the data distribution. A test
element X is associated to the same class as the closest sample based on a
similarity function ϕ between samples defined as:

class(X) = arg min
{w′}

min
Y′∈{Yw′

n }
ϕ(X,Y′) (1)

where {w′} denotes the set of all possible classes. However, as any non-parametric
technique, a large amount of training data is required to obtain a good classi-
fication performance. TM has recently received new attention in the ASR field
because current computational resources and speech corpora allow to deal with
large amount of training data in a practical computational time.

In the case of speech, templates are sequences of feature vectors that cor-
respond to particular pronunciations of a word. When comparing with HMMs,
templates can describe in more detail the dynamics of the trajectories defined by
speech features because they represent real utterances, whereas HMMs are para-
metric representations that summarize the information contained on the speech
trajectories. Furthermore, the explicit use of non-linguistic information such as
gender or speech rate can be easily applied when using templates but this type of
long-span information is more difficult to incorporate into a parametric model.

The similarity measure ϕ between sequences must deal with the fact that ut-
terances usually have different lengths. This measure is based on dynamic time
warping (DTW) [7] and it minimizes the global distortion between two tempo-
ral sequences. This global distortion is computed as the sum of local distances
d(x,y) between the matched frames. This matching is performed by warping one
of the two sequences. In speech, the template sequence is typically warped so
that every template frame ym matches a frame of the test sequence xn. Given a
template sequence {ym}M

m=1 and a test sequence {xn}N
n=1, DTW-based distance

can be expressed as

ϕ(X,Y) = min
{φ}

N∑

i=1

d(xi,yφ(i)) (2)

where {φ} denotes the set of all possible warping functions for the template
sequence. The warping function must hold some constraints of continuity and
boundaries to ensure that the resampled template sequence is realistic. Typical
constrains in the ASR field are:

0 ≤ φ(i) − φ(i − 1) ≤ 2
φ(1) = 1 (3)

φ(M) = N
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These conditions guarantee that no more than one frame from the template
sequence will be skipped for each test frame and also, that every test frame will
be related to only one template frame.

Although the computation of (2) implies searching among a large set of warp-
ing functions, it can be efficiently computed by dynamic programming.

The local distance d(x,y) is typically chosen as Euclidean or Mahalanobis
distance since spectral-based features are normally used for representing the
speech signal. However, other types of similarity measures between frames can
also be applied depending on the properties of the features. In Section 4, a
description of the local distances investigated in this work will be given.

As described before, recent investigation to improve the performance of TM-
based ASR systems is to take advantage of the current large speech corpora and
computational resources by increasing the number of templates. TM becomes
then a search problem among all possible templates [1]. In order to increase the
speed and efficiency of the search, non-linguistic information can be used at the
decoding time [8]. As templates and HMMs convey different types of information
since they are different types of models, investigation has also been carried out for
combining both approaches [2,3] with successful results. However, this technique
requires a large amount of samples per word (or linguistic unit). In this work,
we will focus on the situation where a few samples are given for every word. In
this case, the goal is to reduce as much as possible the variability within a class
so that a few samples will be enough to represent a class word. This variability
reduction will be performed at the feature level and will be explained in detail
in the next section.

3 Posterior Features

The posterior probability p(qk|zt) of a phoneme qk given a spectral-based acous-
tic feature zt at time t can be estimated from a MLP. A posterior vector xt

can then be obtained where each dimension corresponds to a phoneme posterior
xt = {p(qk|zt)}K

k=1. K corresponds to the total number of phonemes and is also
the number of MLP outputs2.

If posterior estimates were correct, these features could be considered as op-
timal speech features by assuming that words are formed by phonemes since,
in theory, they only carry linguistic information and also, they can be seen as
optimal phone detectors as it is demonstrated in [9]. This reduction of the un-
desirable information makes posterior features more stable as it is illustrated in
Figure 1.

Traditional features, like MFCC [10] or PLP [11], contain information about
the spectrum and hence, about the speaker and its environment. However, pos-
terior features can be considered speaker and task-independent since they only
contain information about the phoneme that has been pronounced. Rigorously
2 We are using this notation for the sake of simplicity, but in fact an acoustic context

(typically 4 frames) is used as input of the MLP, hence, rigorous notation should be
p(qk|zt+Δ

t−Δ).
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Fig. 1. The value of the second component of the feature vector in the case of MFCC
features and phone posterior corresponding to the phoneme /n/ are plotted for three
different templates of the word “nine”. It can be seen that values from spectral-based
feature vectors are more variable within a phone than posterior features, which follow
a more stationary trajectory.

speaking, posterior features are not task-independent since the MLP is implic-
itly learning the prior probability of each phoneme, which will be dependent of
the database. However, when using large vocabulary corpora, these probabili-
ties converge to phoneme priors of the language of the database. In this way,
posterior features are language-dependent.

4 Local Distance

From (2), it can be observed that DTW-based distance requires a distance d(x,y)
between reference and test samples of the observation space. Since any local dis-
tance assumes a particular geometry of the observation space, the choice of the
local distance plays a crucial role on the performance of the system. Tradition-
ally, these distances are based on Euclidean and Mahalanobis distances. In the
TM-based approach, investigation has been recently carried out to estimate the
parameters of the weighting matrix of the Mahalanobis distance to improve the
performance. A maximum-likelihood estimation was described in [12] and a dis-
criminative procedure was presented in [13]. However, these methods require a
large amount of data to properly estimate the weights.

Since posterior vectors can be seen as distributions over the space of subword
units (e.g., phonemes), measures from the information theory field can be ap-
plied. These measures can capture higher order statistics from the data than
Euclidean-based distances. Furthermore, they can explicitly consider the partic-
ular properties of posterior vectors (i.e., values must be non-negative and sum
must be equal to one).
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In the following, we will consider that y represents a frame from the template
and x denotes a frame from the test sequence. As explained before, x and y can
be considered discrete distribution on the R

K space (i.e. there are K different
phonemes).

In addition, local distance directly affects the decoding time since computing
the local distance is the most frequent operation on the DTW algorithm. Hence,
the choice of the local distance should also take into account its computational
time.

4.1 Squared Euclidean Distance

This is the traditional distance used as local distance between frames. However,
it is related with the Gaussian distribution. Indeed, when taking the logarithm
of a Gaussian distribution with unity covariance matrix, it becomes the squared
Euclidean distance plus a constant factor.

DEucl(x, y) =
K∑

k=1

(x(k) − y(k))2 (4)

However, when measuring the similarity between posterior features, Euclidean
distance is not very appropriate since posterior space holds some special prop-
erties which are not taken into account by this distance.

4.2 Kullback-Leibler Divergence

KL divergence (or relative entropy) comes from the information theory field and
can be interpreted as the amount of extra bits that are needed to code a message
generated by the a reference distribution y, when the code is optimal for a given
test distribution x [14].

DKL(x || y) =
K∑

k=1

y(k) log
y(k)
x(k)

(5)

KL-divergence is a natural measure between distributions. The fact that it is
not symmetric must not affect its application to DTW algorithm. In this case,
the reference distribution y is considered to be the template frame whereas x
corresponds to the test frame.

4.3 Bhattacharyya Distance

This distance was initially motivated by geometrical considerations since it com-
putes the cosine between two distributions [15]. It is also a particular case of the
Chernoff bound (an upper bound for the Bayes error) [16].

DBhatt(x, y) = − log
K∑

k=1

√
x(k)y(k) (6)
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Bhattacharyya distance is symmetric and also it is faster to compute than KL
divergence because less logarithms must be computed. This distance has been
used already in speech processing for phone clustering [17].

4.4 Distance Based on Bayes Risk

Bhattacharyya distance is originated from an upper bound of the Bayes risk.
However, the exact probability of error can be easily computed for discrete dis-
tributions [18]:

Bayes Error =
K∑

k=1

min {x(k), y(k)} (7)

A distance can be derived similar to Bhattacharyya distance by taking the
negative logarithm:

DBayes(x, y) = − log
K∑

k=1

min {x(k), y(k)} (8)

This distance is even simpler to compute than (6) because it avoids the square
root function.

5 Experiments

5.1 Description

In this work, Phonebook database has been used to carry out word recognition
experiments using the TM-based approach. This database consists of 47455 ut-
terances of isolated words. There are 3992 different words pronounced by around
12 different speaker in average. Experiments with different lexicon sizes have
been carried out: 5, 10, 20, 50 and 100 different words were selected randomly
from the global lexicon. For each experiment and each word, one or two ut-
terances have been selected as templates and the rest of utterances containing
the selected words have been used for test. Since lexicon has been selected at
random, experiments have been repeated ten times using a different lexicon at
each time. Results have been consistent, i.e., similar results have been obtained
at each time and average results are shown.

Two types of features have been considered: PLP and phoneme posterior
probabilities. PLP features also contain delta features. Posterior features have
been obtained from a MLP trained on 30 hours of the CTS database following the
MRASTA procedure [19]. The MLP contains 2000 hidden units and 46 phonemes
(including silence) have been considered.

Constraints for DTW are the same as described in Formula 3. Euclidean,
KL-divergence, Bhattacharyya and Bayes-based distance are considered as local
distances. PLP features only use Euclidean distance (the rest of local distance
can only be applied to discrete posterior vectors).

Experiments on decoding time have been carried out on a workstation with a
Athlon64 4000+ processor.
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5.2 Results

Results on Table 1 show the effectiveness in using posterior features for TM. PLP
features contain information about the speaker and since the task is speaker-
independent, results when using these spectral-based features are far from being
competitive. This explains why TM is mainly focused on speaker-dependent
tasks with small vocabulary. On the other hand, posterior features have been
estimated by taking into account the information captured by the MLP from
the large speech corpus used for training. This, jointly with the discriminative
training of the MLP make posterior features robust to speaker and environment
conditions.

Table 1. System accuracy when using one or two templates per word. The size of the
lexicon has been varied to observe the effect of increasing the lexicon. The last column
shows the average number of test utterances.

one template two templates

lexicon PLP Posteriors PLP Posteriors # test
size Eucl Eucl KL Bhatt Bayes Eucl Eucl KL Bhatt Bayes utts

5 79.3 93.2 98.2 98.7 98.0 90.8 96.6 98.9 98.9 98.5 55
10 74.7 91.9 97.8 98.3 97.5 85.4 95.7 98.9 98.9 98.4 104
20 69.8 89.5 95.6 96.5 95.7 81.9 94.2 98.4 97.9 97.5 212
50 59.7 83.1 92.9 94.1 92.9 74.2 90.2 96.6 96.8 96.1 545
100 53.2 78.5 89.7 91.4 89.7 68.0 87.5 94.9 95.1 94.2 1079

Moreover, posterior-based distances such as KL divergence, Bhattacharyya
and Bayes-based distance yield better results than traditional Euclidean distance
since they explicitly deal with the space topology of the posterior features.

Figure 2 plots the system accuracy with two templates per word and also
shows the effect of increasing the size of the lexicon. When using 100 different
words, the performance of the system is still around 95%, which is reasonable
result given the complexity of the task and the limited amount of samples per
word3.

Experiments have been carried out to investigate the effect of the local dis-
tance on the decoding time. Results are shown in Figure 3. It can be observed
that KL-divergence takes a long time for decoding because of the logarithm
function. Bhattacharyya distance replaces the logarithm function by a square
root function, which takes less time than the logarithm. Bayes-based distance
is faster than the previous since selecting the minimum value is a very simple
operation. Finally, Euclidean distance is faster than the rest but its accuracy is
significantly worse than the other distances.

3 Experiments comparing templates and hybrid HMM/MLP [20] have been carried
out using the test set described in [21]. There are 8 different test sets consisting each
one of 75 different words. In this case, we obtained similar results in both systems,
i.e. around 95% accuracy.
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Fig. 3. This figure shows the real time factor depending on the total number of tem-
plates. Real time factors is defined as the ratio between the decoding time and the
duration of the test sequence. A dashed line indicates when the decoding time is equal
to the duration of the sequence.

6 Conclusion

In this work we have tested the effectiveness of posterior features on a TM-
based approach. Since these features have been trained using a large vocabulary
database, they can be considered speaker and task-independent. These properties
make these features very suitable for those conditions where a word must be
represented by a few examples. Moreover, the choice of the local distance has
been investigated since it both assumes a topology on the feature space and also
directly affects the decoding time. Though KL-divergence is a very appropriate



Posterior-Based Features and Distances in Template Matching 213

local distance when using posterior features, it takes a long time to be computed
because it requires a logarithm function for each dimension of the posterior
vector. Other types of distances based on the probability of error have also been
investigated which are simpler to compute and yield similar performance.

Future work should be focused on investigating other ways to incorporate in-
formation of large speech corpora on TM-based approach. A possible way would
be to combine the posterior features from different MLPs. Initial experiments
have already been carried out with successful results.
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Abstract. In this paper we present a study of automatic speech recogni-
tion systems using context-dependent phonemes and graphemes as sub-
word units based on the conventional HMM/GMM system as well as
tandem system. Experimental studies conducted on three different con-
tinuous speech recognition tasks show that systems using only context-
dependent graphemes can yield competitive performance on small
to medium vocabulary tasks when compared to a context-dependent
phoneme-based automatic speech recognition system. In particular, we
demonstrate the utility of tandem features that use an MLP trained to
estimate phoneme posterior probabilities in improving grapheme based
recognition system performance by implicitly incorporating phonemic
knowledge into the system without having to define a phonetically tran-
scribed lexicon.

1 Introduction

State-of-the art automatic speech recognition (ASR) systems represent words as
a sequence of sub-word units, typically phonemes which have a strong correla-
tion with the acoustic observations. In recent studies, attention has been drawn
toward speech recognition systems using grapheme as sub-word units [1,2,3,4].
The main advantages of using grapheme as sub-word units are (1) the definition
of lexicon is easy (orthographic transcription), and (2) the pronunciation mod-
els are relatively noise free. The main drawback of using graphemes as sub-word
units is that a single grapheme can map onto many different phonemes, i.e. there
is often a weak correspondence between graphemes and acoustic observations,
particularly in the English language.

Schukat-Talamazzaini et al. were one of the first to present results in speech
recognition based on graphemes [4]. They used “polygraph” sub-word units for
word modelling, which is essentially letters-in-context similar to polyphones
(phonemic units allowing preceding and following context of arbitrary length).
Experimental studies conducted on continuous speech recognition task and
isolated word recognition showed that good results (better than context-
independent phone) can be obtained using “polygraph” as sub-word units.

A. Popescu-Belis, S. Renals, and H. Bourlard (Eds.): MLMI 2007, LNCS 4892, pp. 215–226, 2007.
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In a recent study, the approach of mapping orthographic transcription to a
phonetic one has been investigated in the context of speech recognition [1]. In
this approach, the orthographic transcription of the words are used to map them
onto acoustic hidden Markov model (HMM) state models using phonetically
motivated decision tree questions. For instance, a grapheme is assigned to a
phonetic question if the grapheme maps to the phoneme. Recognition studies
performed on Dutch, German and English yielded performances comparable to
phoneme-based ASR system for the Dutch and German languages, and fairly
poor performance for the English language.

Killer et al. have investigated context dependent grapheme based speech recog-
nition, where the context is modelled through a decision tree based clustering
procedure [2]. Experimental studies conducted on English, German and Spanish
languages yielded competitive results compared to phoneme-based system for
German and Spanish languages, but once again fairly poor performance for the
English language.

In [5,3], we proposed a phoneme-grapheme based system that jointly models
both the phoneme and grapheme sub-word units during training. During de-
coding, recognition is done either using one or both sets of sub-word units.
This system was investigated in the framework of a hybrid hidden Markov
model/artificial neural network (HMM/ANN) system. Improvements were ob-
tained over a context-independent phoneme based system using both sub-word
units in recognition on two different tasks: isolated word recognition [3] and
recognition of numbers [5].

In this paper, we present a study of context-dependent phonemes and
graphemes as sub-word for English ASR systems. We analyse the use of grapheme
as sub-word units for English ASR by comparing it with the standard phoneme
based system using two different features (standard PLP cepstral feature [6] and
tandem feature [7]) on three tasks of increasingly complexity: OGI Numbers95
(NU95) [8], DARPA resource management (RM) [9] and continuous telephone
speech (CTS) [10]. Our studies show that on tasks of smaller complexity such
as NU95 the grapheme based ASR system can perform as good as the phoneme
based ASR system. At the same time, on tasks of increased complexity such
as RM and CTS the performance difference between the two systems, phoneme
based system and grapheme based system, becomes more pronounced with the
phoneme based system being the better one. Our studies also show that on these
tasks of increased complexity the difference between the two systems is greatly
reduced when using tandem features.

2 Background

Lexical representations play a critical role in ASR. In all but the most con-
strained tasks, it is necessary to represent words by a sequence of sub-word
units (the so called ‘beads-on-a-string’ paradigm), in order to give a compact
representation of the lexicon that still provides good correspondence between
the words and acoustic observations. Most commonly, sub-word units take the
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form of phonemes, as they are limited in number (of the order of 45 for English)
and show good correspondence with the acoustic observations. One disadvantage
of the use of phonemes is that mapping from words to phonemes is generally a
knowledge driven process that is difficult to automate with a high level of fi-
delity, thus making it an expensive process in terms of development time and
effort. Automatic means for deriving pronunciations in text-to-speech synthesis
exist in order to enable such systems to handle out-of-vocabulary text, but gen-
erally such mechanisms are not employed in ASR. Interestingly enough, if we
examine two of the most commonly used techniques in letter-to-sound mapping
and ASR lexical representations, we see that context-dependency plays a critical
role. In this section, we describe the use of context dependent sub-word units in
letter-to-sound mapping and acoustic modelling for ASR, drawing attention to
the similarities between the two. We also briefly describe the tandem acoustic
features, which feature significantly in our studies.

2.1 Letter-to-Sound Mapping Using Decision Trees

In text-to-speech synthesis it is often necessary to produce pronunciations for
words that lie outside the pronunciation dictionary of the system. Such systems
employ letter-to-sound (LTS) mapping techniques to automatically generate pro-
nunciations. A common approach to this problem is to use decision trees [11].
The decision tree approach is carried out by first aligning grapheme and phoneme
symbols from a pronunciation dictionary that is to be used for training1. For each
grapheme occurrence the graphemes surrounding it (a context window of N to
the left and right) are recorded as well as the phoneme which has been aligned
to the grapheme. The decision tree is trained from this data by pooling all of
the instances of a particular grapheme together then successively splitting the
data according to the grapheme context that gives rise to the largest decrease
in leaf node impurity (entropy of the leaf’s phoneme distribution times number
of sample points). By building a decision tree in this manner a set of rules is
derived that use a grapheme’s context to determine its pronunciation.

2.2 Context Dependent Modelling of Sub-word Units

Word pronunciations can differ greatly from their lexical form, particularly due
to the effects of coarticulation, making it common practice to explicitly model
each sub-word unit according to the context in which it occurs. Due to the limi-
tations of data coverage and decoding complexity, a single phone context to the
left and right (the ‘triphone’) is generally used. Even then, a large quantity of
data is required in order to independently learn the statistics of each context
dependent unit, hence, a parameter sharing scheme is needed. The most com-
monly employed parameter sharing scheme is the decision tree-tying approach
[12], which pools all of the data for a particular sub-word unit into a single

1 Extra measures need to be taken to deal with words which have fewer/more
phonemes than graphemes.
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root node and performs tree growth by selecting the question at each split that
maximises the increase in likelihood of the acoustic models over the training
data. The decision tree approach not only achieves more robust modelling of
seen contexts, but also enables the synthesis of unseen contexts.

The questions used to split the data may be singleton (each question re-
lates to only a single sub-word unit), knowledge based (eg. phonemic: “is the
left phone context a VOWEL”) or data driven [13]. In general, the knowledge
based approach is used as it gives both good data utilisation and generalisa-
tion, in particular for unseen contexts, but clearly, for grapheme based systems,
only singleton and data driven can be used. Killer et. al. [2] explored differ-
ent approaches to question set derivation for context-dependent grapheme based
speech recognition and demonstrated that, in fact, the singleton questions sets
gave best results, though with the disadvantage of inefficient data utilisation
compared to data-driven approaches. It should also be noted that context de-
pendent modelling of grapheme-based sub-word units displays strong similarities
with the letter-to-sound mapping described in the previous section, since we are
learning a mapping from the graphemic representation to the acoustic feature
space, which is much more strongly correlated with the phonemic representation.

2.3 Tandem Acoustic Features

Tandem systems have been shown to yield state-of-the-art performance in ASR
[7]. A tandem system combines the discriminative training of an ANN with Gaus-
sian mixture modelling by using the processed posterior probabilities generated
by an MLP as the input feature for the HMM/GMM-based system. It has been
demonstrated that tandem features exhibit greater robustness to unwanted vari-
abilities [14,15]. This is due to the ability of the ANN to project multiple frames
of acoustic features onto dimensions carrying information most pertinent to the
speech recognition task.

A tandem based system can also be viewed as a cascade of classifiers, thus,
permitting the integration of decisions made in an earlier classification stage
into later stages. Tandem acoustic features are of interest in this study as they
present a means of introducing phonetic knowledge into a grapheme based system
through the use of an MLP trained on phonemic targets, without the need for
explicit specification of a phonemic pronunciation dictionary (though phonemic
targets are still required for the training of the MLP, this can be performed on
a corpus where phonetic transcriptions are available).

3 Empirical Studies

3.1 Experimental Setup

Our studies were conducted on three well known speech corpora that comprise
tasks of varying complexity with regard to training data, lexicon and language
model. The major features of each corpora are listed in Table 1, highlighting
their respective differences.
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Table 1. Summary of the three corpora used in our studies. CI: context independent,
CD: content dependent.

Name Component Description Statistic

OGI Numbers95 Audio data Quantity of data
Train: 90 mins
Test: 30 mins

Lexicon Closed2

Words: 31
Phoneme (CI/CD): 24/81
Graphemes (CI/CD): 19/85

Acoustic model Word internal, context dependent
Language model Wordloop

DARPA RM Audio data Quantity of data
Train: 3.8 hrs
Test: 1.1 hrs

Lexicon Closed
Words: 991
Phonemes (CI/CD): 42/2269
Graphemes (CI/CD): 29/1912

Acoustic model Word internal, context dependent
Language model Wordpair

CTS3 Audio data Quantity of data
Train: 32 hrs
Test: 1.3 hrs

Lexicon Open
Words: 1000
Phonemes (CI/CD): 47/20k
Graphemes (CI/CD): 36/9k

Acoustic model Cross-word, context dependent
Language model Bigram

Acoustic models were trained for the three corpora using the hidden Markov
model toolkit (HTK) from both PLP and tandem-features [16] . In each case, the
acoustic models were trained through: 8 iterations of re-estimation on context-
independent models, 2 iterations of re-estimation on context-dependent models
followed by model tying, 7 iterations of re-estimation on tied context-dependent
models and finally increment of mixtures from 1 to 8 in multiples of two with 3 it-
erations of re-estimation at each increment step. In these studies we investigated
singleton, knowledge-based and data driven question sets for state tying. We
used a fixed log-likelihood threshold to control decision tree growth, thus mod-
els were allowed to achieve differing levels of complexity based on the sub-word
units, features, and question sets used.

2 Meaning that the same words appear in train and test data.
3 We use the CTS task as defined in [10], which has been designed to have reduced

complexity for training and evaluating ASR systems on CTS data.
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In making comparisons between systems on the same task and on different
tasks we make the following caveats. First of all, we are primarily interested
on differentiating between systems based on the sub-word units and how this is
affected by features and question sets. We note that due to the approach taken
with respect to decision tree tying, our systems will have a different number of
parameters, but also point out that allowing clustering to proceed with a lower
log-likelihood threshold would not likely contribute to ASR performance (though
may have yielded models with similar number of states, hence, parameters).
Conversely, by focusing on the result of the clustering procedure, rather than
being concerned with model complexity, we are able to make some observations
on the role of features and questions sets on the clustering process itself.

PLP feature extraction comprised 13th order PLP cepstral coefficients and
their deltas and delta-deltas. The features were computed every 10ms over a
window of 30 ms. For the tandem-features, an MLP was trained on the PLP
features with output units corresponding to context-independent phonemes. The
phoneme targets for MLP training were derived from a forced alignment of the
training data using the PLP based acoustic models. We extracted the tandem-
features using the MLP’s phoneme log-posterior estimates followed by Karhunen-
Loeve transformation. In the grapheme dictionary, the numbers and abbreviated
words were replaced by their graphemic representation eg. 45 ⇒ FORTY FIVE.

3.2 OGI Numbers95

The OGI numbers95 (NU95) database comprises a limited vocabulary task that
employs a word-loop language model. In our experiments we used the definition
of the training set, validation set, and test set based on that defined in [17].
For the purposes of investigating different lexical representations, this is a very
simple task. In comparing the ASR systems produced from context dependent
phoneme and grapheme models shown in Table 2 we can see that the complexity
of the acoustic models is quite similar with the grapheme system having slightly
more models/states than its phoneme based counterpart. This is reflected in
the overall performance of the grapheme system, which has slightly lower error
rates than the phoneme system. The tandem based systems had the same perfor-
mance on this task, this being significantly better than that obtained from PLP
features. While these results suggest that phoneme and grapheme system can
achieve equivalent performance, it is clear that this is because both the context
dependent grapheme and phoneme acoustic models have an almost one-is-to-one
mapping to their corresponding lexical entry.

3.3 DARPA Resource Management

We next performed ASR evaluations on the DARPA resource management (RM)
corpus. This corpus is also of relatively low complexity compared to state-of-the-
art evaluation tasks, but is still quite a step up from the OGI numbers task. In
particular, the lexicon is greatly increased from 31 to almost 1000, thus context
dependent models may no longer have a unique mapping to a single word. The
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Table 2. ASR results on OGI Numbers95 task

Unit Feature Quest Log. Phy. Log. Phys. WER
Models Models States States (in %)

Phoneme PLP Phonemic 81 74 241 191 6.3
Tandem Phonemic 81 74 241 193 4.4

Grapheme PLP Singleton 85 79 256 198 5.9
Tandem Singleton 85 78 256 196 4.4

Table 3. ASR results on DARPA resource management task

Unit Feature Quest Log. Phy. Log. Phys. WER
Models Models States States (in %)

Phoneme PLP Singleton 2269 1501 6729 1477 5.7
Tandem Singleton 2269 1628 6729 2013 5.7

Grapheme PLP Singleton 1912 1298 5727 1369 7.3
Tandem Singleton 1912 1360 5727 1985 6.3

Merged PLP Singleton 4181 2799 12456 2846 5.5
Tandem Singleton 4181 2988 12456 3998 5.1

lexicon is still closed, thus it is not necessary for the acoustic models to generalise
to words not seen in training, nor is it necessary to synthesise unseen contexts.

The results from the experiments on the RM corpus are shown in Table 3. We
originally extended our analysis of the RM corpus in order to better compare
the systems by building systems using both singleton and data driven questions
sets (according to [13]). We only report the results for singleton questions sets
here as the data driven approach was not found to provide significantly different
results on this task.

A number of observations can be made from these results. In particular we
can note that for both PLP and tandem features the number of physical states
in the grapheme and phoneme systems is roughly equivalent, despite there being
fewer actual (logical) states for the grapheme system. This demonstrates that
the decision tree growth for grapheme based models needs to be deeper (more
questions) in order to model the more complex relationship between graphemes
and the feature space. In particular, the grapheme based context dependent
modelling must account for the many-to-one mapping associated with LTS, in
addition to the challenges associated with conventional phoneme based modelling
such as coarticulation.

In comparing the PLP and tandem feature based systems we see that tan-
dem features provide a significant improvement for the grapheme based system,
although, for this task, it still remains behind that of the phoneme based sys-
tem. We also observe that tandem based features lead to a greater number of
states, mostly likely due to there being less unwanted variability in the tandem
features, which leads to better separation of context-dependent state distribu-
tions and thus more effective clustering. This is particularly important for the
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grapheme system where co-articulatory effects further complicate the task of
learning the relationship between the feature space and the context dependent
grapheme models.

In a last test we also merged phoneme and grapheme acoustic models and
lexica (without retraining), thus enabling a mixture of grapheme and phoneme
based models to be used during recognition. We see that this gives a slight
improvement over both phoneme and grapheme systems, suggesting that the
grapheme models, while giving overall inferior performance to the phoneme sys-
tem, still manage to achieve some degree of complementarity. I.e. grapheme
modelling is not just an inferior alternative to phoneme modelling. Further anal-
ysis performed using the merged models and dictionaries on the development
set of DARPA RM task showed that grapheme models were more preferred for
function words which short in terms of length (number of graphemes). We also
measured the mutual information between context independent and dependent
phoneme and grapheme labels at the frame level, but the analysis of results did
not provide any additional insights.

3.4 Conversational Telephone Speech

The final evaluation carried out as part of this study was with the conversational
telephone speech (CTS) corpus. This corpus is significantly more complex than
those previously described in that it is an open lexicon (meaning that words
may appear in testing that do not appear during training), although for the
task definition that we chose the lexicon is of similar size to that used in RM
[10]. Furthermore, the acoustic conditions are significantly more challenging as
the audio is taken from a telephone channel. In training the context-dependent
models on the CTS corpus, we made one change to the training procedure, which
was to allow for cross-word context dependency. Due to the increased complexity
of the task we have only conducted limited investigations on the CTS task,
namely the male part of the corpus. The results are detailed in Table 4.

One of the first points that stands out from these results is the discrep-
ancy between the number of logical models and physical states in the phoneme
and grapheme systems. The phoneme system has twice the number of logical
models (by virtue of the fact that there are more phonemes than graphemes),
but conversely half as many physical states. This is partly due to the fact

Table 4. Preliminary ASR results on male part of the CTS task

Unit Feature Quest Log. Phy. Log. Phys. WER
Models Models States States (in %)

Phoneme PLP Phonemic 20810 5601 62430 1325 45.7
Tandem Phonemic 20640 7370 61920 1786 45.3

Grapheme PLP Singleton 9309 4435 27927 2602 53.0
Tandem Singleton 9278 4125 27834 2885 50.3
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that the singleton question set will naturally lead to deeper decision trees, but
can also be attributed to the greater complexity required in modelling context-
dependent graphemes. This is consistent with the findings in Black et. al. [11],
who demonstrated that using an early stopping criterion to prevent over-fitting
of decision tree learning of letter-to-sound mappings was actually detrimental
to performance.

Further observations from these results may also be noted. First of all, once
again the tandem features appear to provide some improvement in both phoneme
and grapheme systems, particularly in the grapheme case. Unfortunately though,
the grapheme tandem system still lags significantly behind the phoneme sys-
tem. In addition to the inherent difficulties in using grapheme based sub-word
units, we can also attribute additional factors to this loss in performance. The
use of cross-word context dependent models made the grapheme based system
significantly disadvantaged in that cross-word contexts are likely to be counter-
productive for letter-to-sound mapping. In addition, the open nature of the vo-
cabulary demands that the grapheme based system be able to generalise to
unseen words and contexts, which is considerably more challenging than for the
phoneme system. While these issues could be addressed to some extent by (for
example) the use of special symbols to disambiguate word internal and cross-
word contexts the problem of generalisation may not be easily solved (and at the
least may require significantly more training data than for the phoneme based
system).

4 Conclusions

In this paper we have studied the use of context-dependent phonemes and
graphemes as sub-word units for automatic speech recognition. ASR studies con-
ducted on different tasks show that by using context-dependent graphemes as
sub-word units, performance similar to the state-of-the-art context-dependent
phoneme based ASR system can be achieved on constrained tasks. Analysis
demonstrates that the contextual modelling of grapheme units gives behaviour
similar to phonemes and is achieved in a similar fashion to that observed in
letter-to-sound mapping techniques.

In OGI Numbers95 studies we obtained better performance using graphemes
when the acoustic models were trained with PLP features and similar perfor-
mance when trained with tandem features. In the DARPA RM task studies
we observed a marked difference between ASR systems using phoneme and
grapheme when trained with PLP features. However, this difference is reduced
when using tandem features. An explanation for this can be that the tandem
system is able to implicitly incorporate phonetic knowledge while still having
no requirement for the specification of a phonetic lexicon. In the much more
complex CTS task we also observed improvements thanks to tandem features,
though not to the same extent to that observed on the simpler tasks. These
observations are summarised in Table 5
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Table 5. Summary of findings from our studies. ≈ means comparable, ↑/↓ means
somewhat greater/reduced, ⇑/⇓ means significantly greater/reduced

Lexicon Cross-word System Phoneme-Grapheme Performance Tandem
Modelling Complexity Correspondence (grapheme) vs PLP

small (closed) no ≈ ≈ ≈ ↑
medium (closed) no ↑ ↓ ↓ ↑
medium (open) yes ⇑ ⇓ ⇓ ↑

In both OGI Numbers95 task and DARPA RM task the words that are present
in the dictionary are present in both training data and test data. In other words,
there were no unseen contexts unlike in the CTS task. It is likely that this
played a large role in the significantly reduced performance of the grapheme
based CTS system compared with the phoneme based system. Further research
will need to look at how to overcome this, either through improved parameter
sharing approaches or by drawing upon non-acoustical data such as existing
pronunciation lexica (which may not provide full coverage of the acoustic training
data). It may also be interesting to look at a wider sub-word unit context in the
framework of either WFST based decoding or lattice rescoring.

We also carried out an experiment on the RM corpus in which we merged
grapheme and phoneme models and lexica and showed improved performance
over either system alone. This suggests that the grapheme based models are
complimentary to the phoneme models. In order further validate this hypothesis
on a more challenging task such as CTS, it is clear that there are a number
of hurdles that would first need to be overcome. Firstly, the use of cross-word
models would require that we merge models in a less naive fashion as the current
approach does not support cross-word contexts between phoneme and grapheme
systems.

While it may be difficult to justify the use of grapheme based sub-word mod-
elling for the English language, which is rich in linguistic resources and which
exhibits poor grapheme-phoneme correspondence, however, we expect that the
findings of our research to be of value for resource poor languages. In partic-
ular, the adoption of a tandem based scheme with grapheme modelling pro-
vides the possibility of incorporating phonetic knowledge from a resource rich
language such as English into a resource language, while avoiding the need to
develop a pronunciation dictionary, as supported by previous studies of tandem
features [18].
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Abstract. Tandem automatic speech recognition (ASR), in which one
or an ensemble of multi-layer perceptrons (MLPs) is used to provide a
non-linear transform of the acoustic parameters, has become a standard
technique in a number of state-of-the-art systems. In this paper, we ex-
amine the question of how to transfer learning from out-of-domain data
to new tasks.

Our primary focus is to develop tandem features for recognition of
speech from the meetings domain. We show that adapting MLPs orig-
inally trained on conversational telephone speech leads to lower word
error rates than training MLPs solely on the target data. Multi-task
learning, in which a single MLP is trained to perform a secondary task
(in this case a speech enhancement mapping from farfield to nearfield
signals) is also shown to be advantageous.

We also present recognition experiments on broadcast news data which
suggest that structure learned from English speech can be adapted toMan-
darin Chinese. The performance of tandem MLPs trained on 440 hours of
Mandarin speech with a random initialization was achieved by adapted
MLPs using about 97 hours of data in the target language.

1 Introduction

This work is concerned with the use of multi-layer perceptrons (MLPs) to pro-
vide non-linear transformations of acoustic features for use in automatic speech
recognition (ASR). This approach is known as tandem ASR [1], and has become
a common addition to modern ASR systems. For example, several of the meeting
ASR systems presented at the NIST Rich Transcription 2006 spring evaluation
(RT06s) included the use of non-linear feature transforms using MLPs.

The process of producing tandem features is sketched in Figure 1. Multiple
frames of acoustic parameters are fed into one or an ensemble of MLPs. Rather
than interpreting the outputs as phone class posteriors as in hybrid artificial neu-
ral network (ANN)/HMM ASR [2], they are subjected to a logarithm transforma-
tion and dimensionality reduction, then treated as observations. Once computed,
they are appended to standard acoustic parameters in a hidden Markov model
(HMM) system with Gaussian mixture model (GMM) observation distributions.
The power of tandem ASR is two-fold. Firstly, multiple frames of acoustic features
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c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Schematic of tandem feature mappings

are used as input to the MLP, which introduces longer-span contextual informa-
tion. Secondly, the non-linear mapping is trained against phone targets, which has
the effect that separation between phone classes is maximized in the output space.
This separation leads to improved discrimination by the GMM which describes
the output space associated with each HMM state. In addition, tandem features
have been shown to exhibit some cross-task and cross-language portability [3]. Re-
cent work [4] has also shown that the tandem feature extraction is complimentary
to discriminative feature transformations such as function minimum phone error
(fMPE).

Given the ever-increasing amounts of data on which systems are trained, and
the considerable computational expense of training large MLPs, it is of interest
to determine if learning can be transferred across domains and tasks. In this
paper, we examine this question using experimental work within two scenarios.
The first is recognition of farfield speech signals within the meetings domain.
It was shown in [3] that adapting MLPs trained on out-of-domain data lead to
better performance compared with unadapted MLPs, and that a slight improve-
ment was given by adaptation of the Gaussians associated with HMM states
onto the new features. In this paper we consider whether it is advantageous to
adapt a previously-trained MLP or to retrain from scratch on the target data.
Additionally, we present experiments on training MLPs using multi-task learn-
ing (MTL) [5], in which a single MLP is trained to perform a number of tasks.
The second scenario we consider is the building a set of MLP-based features for
a Mandarin broadcast news system.

2 Tandem ASR

Using MLP-based features in the tandem paradigm has been the subject of
endeavour by a number of groups, including AMI [6], IDIAP [7] and ICSI [8].
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The approach adopted at ICSI, which is also taken in this work, is to use a
combination of the posteriors from two sets of MLPs.

The first of these is PLP-MLP, in which a 9 frame window of perceptual linear
prediction (PLP) cepstra is used as input to a 3-layer MLP. The hidden units
have sigmoid activation functions, and there is a softmax over the outputs.

The second is known as hidden activation temporal patterns (HATS) [9].
Under this configuration, separate small (e.g., 60 hidden unit) 3-layer MLPs are
trained for phone classification with log critical band energies as input (one MLP
per critical band with 50 frame windows). The hidden activations from each of
these individual MLPs are then fed into a larger merger MLP, which is again
trained on the task of phone classification.

The performance gains from using tandem and HATS feature independently
are similar, though the additional information appears to be complementary, as
the best results have been found using posterior combinations of the two [10].

Prior to the Fall 2004 DARPA speech-to-text (STT) evaluation, which focused
on English continuous telephone speech (CTS), significant quantities of data
(close to 2000 hours) became available in the form of the Fisher corpus. Training
of MLPs on this data is described in [10], a process which took approximately
six weeks despite the use of code optimized to run on a multiple-core machine,
and introducing techniques specifically designed to reduce the training time.
Training the MLPs on an order of magnitude more data than had been done
previously led to improved performance. The focus of this paper is to explore
methods by which the information encoded by these MLPs may be transferred
to other domains.

3 Meetings Domain

The meetings domain offers a particular set of challenges due to the nature of
spontaneous multiparty speech in which speakers frequently overlap. When the
participants’ speech is recorded using individual headset microphones (IHM), the
high signal-to-noise ratio means that recognition has a word error rate (WER)
of around 20%. However, it is not always possible or practical to have partic-
ipants wearing individual microphones. In that case, tabletop recording is re-
quired, which creates a new set of problems due to reduced signal-to-noise ratio
and presence of effects such as reverberation. These lead to significantly higher
WERs, in the region 30-35%. The NIST RT06s meeting ASR evaluation specified
three different farfield conditions:

– single distant microphone (SDM) - a single tabletop microphone source.
– multiple distant microphone (MDM) - tabletop microphone array with be-

tween 4 and 8 nodes.
– all distant microphones (ADM) - all channels used, which may include mul-

tiple microphone arrays.

In this work we use data from the MDM condition. The input waveforms were
subject to delay-and-sum as described in [11].
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All systems are gender-dependent, and employ many decoding stages including
speaker adaptation, lattice generation, consensus decoding, n-best list rescoring,
and cross-adaptation. For a full description, see [11].

3.1 Adaptation Procedure

Since the targets against which the MLPs are trained are the English phone set
as used to train the CTS MLPs, the adaptation procedure we adopt is to carry
out a few epochs of further training from the CTS-trained nets.

CTS MLPs were trained on 8kHz data, and the original CTS front-end con-
figurations were preserved when generating input features for the meeting data.
Both tandem (3-layer 9-frame PLP input) and HATS (15 critical band MLPs
with 51 frame input followed by merger on hidden activations) were adapted.
For the HATS, only the merger MLP was adapted.

The time-aligned phone segmentation which is used to provide training targets
was produced by segmenting against the nearfield signals, which have a higher
signal-to-noise ratio, and therefore were assumed to produce a more accurate and
consistent segmentation. Any regions of overlapped speech were removed, and
targets were generated for the farfield signals by matching each frame against
the nearfield frame closest in time.

Since the targets were generated using nearfield alignments, the nearfield cut-
tings can be considered as clean versions of the farfield data. Previous experi-
ments showed that adapting MLPs to nearfield data improved farfield WER, so
a single epoch of adaptation to nearfield data was carried out first. This was fol-
lowed by 3 epochs of adaptation to the farfield or combined farfield and nearfield
signals. The MLPs from the epoch which gave the highest cross-validation (CV)
accuracy during training were used for experimentation.

For the farfield MLPs, a single channel was selected at random to provide
the data for each segment, though input normalizations were calculated over all
segments for any given speaker/channel combination. The starting learn rates
were equal to those in the last epoch of training of the CTS MLPs.

3.2 Multi-task Learning

Our goal is to produce features for use in a farfield system, though we consider
methods by which the matched nearfield data might be used during the training
phase, assuming it will not be available at test time. As discussed above, one
possibility is simply to use nearfield parameters as input to the MLP during
training.

Alternatively, we can use the nearfield data as an output of the MLP. This is a
particular application of transfer learning known as multi-task learning (MTL)
[5], in which a single MLP is trained to perform multiple related tasks. In our
case, the MLP will be learning a speech enhancement mapping from farfield to
nearfield speech parameters in addition to the usual phone posterior estimation.

The rationale is that by using a shared representation, related tasks can act
as a prompts for each other. Additionally, given that local minima of the error
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TASK 2
nearfield PLP

phone target

TASK 1

farfield PLP

Fig. 2. Multi-task MLP for tandem ASR. The MLP learns a speech enhancement
mapping from farfield to nearfield PLP features in addition to the usual phone posterior
estimation.

function are unlikely to fall at the same location for multiple tasks, the risk of
over-training is reduced.

Figure 2 shows the multitask PLP-MLP configuration. Farfield PLPs provide
the inputs to a fully-connected hidden layer. The output layer is divided into
two regions. The first is a group of 46 units with a softmax activation function,
trained to perform phone posterior estimation. The second is a set of 39 sigmoid
units which map to the frame of nearfield PLPs matching that from the centre
frame of the input window. The target PLPs are scaled to be in the range [0.0,
1.0] in order to match the output range of sigmoid units. In the case of HATS,
it is the merger MLP which is trained to be multi-task.

3.3 Experiments

Once the MLPs had been adapted to the target domain, features were generated
to match the training data, and the Gaussians associated with HMM states were
adapted to the new features. Unlike for MLP training, the data from all channels
for each farfield segment was used as adaptation material. Once adapted, features
were generated to correspond to the test data, and a multi-pass decoding pass
was initiated, as described in [11]. The MLP features are used in the first stage
of decoding, and are appended to Mel frequency cepstral coefficients (MFCCs).

The results presented in Table 1 are the word error rates (WERs) for the NIST
RT05s evaluation data. The WER is shown for each MLP type after the first
stage of decoding (one-pass), and at completion of the final multi-pass sweep.
A baseline system in which no MLP features were used gives WERs of 50.2%
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Table 1. Results (WER) on the NIST RT05s MDM evaluation data for a number of
different adapted MLPs

WER (%)
MLP train data

one-pass multi-pass

no MLP N/A 50.2 36.7

random farfield 44.0 35.2
initialization farfield MTL 44.1 34.3

nearfield 52.7 41.2
adapted

farfield 43.3 33.2
from CTS

nearfield+farfield 42.7 33.0

and 36.7% for one-pass and multi-pass decoding respectively. Using the features
from randomly-initialized MLPs, trained only on the farfield data, there is a
substantial reduction in the WER after the first pass, from 50.2% to 44.0%, and
at completion of all passes, the gain is reduced, though still evident with the
WER reducing from 36.7% to 35.2%. For the MLPs which were trained in a
multi-task setting, there is no benefit evident for the one-pass decoding, though
at completion, the WER is reduced to 34.3%. These results suggest that guiding
learning with the addition of a speech enhancement task is of benefit.

The next set of results correspond to MLPs which have been adapted from
the CTS MLPs which were originally trained on 2000 hours of speech. Using the
MLPs which were adapted on nearfield signals leads to increases in WER com-
pared with a system with no MLP features. This can be attributed to mismatch
of the nearfield and farfield signals. The MLPs adapted on only farfield data led
to WERs of 43.3% and 33.2% after one and multiple decoding passes respec-
tively. These results show substantial improvement over the baseline non-MLP
system, and further reductions over the MTL-trained MLPs. Finally, adapting
MLPs on pooled nearfield and farfield data gives the best results overall, with
WERs of 42.7% and 33.0% for one-pass and multi-pass decoding.

One possible explanation for the superior performance of adapted MLPs is
their size. Each of the CTS MLPs has 8 million parameters, which translates to
20,800 hidden units for each of the male and female tandem nets. By contrast,
the male and female tandem nets which were trained from scratch had 7125
and 1825 hidden units respectively, and the MTL-trained MLPs slightly fewer in
order to maintain an equal number of free parameters. The numbers of hidden
units were determined by setting the total number of free parameters to equal
15% of the number of training frames.

4 Mandarin Broadcast News

In this section, we consider the problem of deriving tandem MLPs for use in a
Mandarin Chinese system. Approximately 440 hours of Chinese broadcast news
(BN) data was available, 97 of which had careful transcripts. For the remainder,
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Table 2. Cross validation accuracies on Mandarin broadcast news data for tandem
and HATS MLPs both with random initialization, and adapting from English CTS.
Accuracies are shown for randomly-initialized MLPs trained on the 97-hour subset,
with the number of free parameters set to be 5% and 10% of the total training frames.

Cross-validation accuracy
initialization

tandem HATS

random 5% free params 74.1% 75.5%
random 10% free params 74.8% 76.2%

adapted, 3-layer 76.8% 77.2%
adapted, 4-layer 75.5% 76.5%

transcripts derived from a forced alignment of closed captions were available.
Framewise labels were in terms of a set of 71 tonemes. In addition to training
tandem and HATS MLPs from random initialization for the Mandarin data, the
English CTS MLPs were used as a starting point for cross-lingual adaptation.
Two strategies were explored: in the first (3-layer), the English CTS input-hidden
layer was used in conjunction with a randomly initialized hidden-output layer.
In the second (4-layer), an extra layer was added to the CTS MLPs. In both
cases, training then proceeded with all weights being updated at each epoch. For
HATS, it was the merger MLP which was adapted, and the critical-band MLPs
used unchanged.

Whilst the English CTS system and tandem MLPS were gender dependent,
the Mandarin system is gender independent. The female CTS nets were chosen
as a basis for adaptation as they were originally trained on more data.

Table 2 shows cross-validation (CV) accuracies for the Mandarin MLPs both
with random initialization, and for the 3-layer and 4-layer MLPs which are ini-
tialized from English CTS MLPs. In all cases the training data is the 97-hour
subset. For the randomly-initialized MLPs, accuracies are shown for the number
of free parameters set to be 5% and 10% of the total training frames. We find
that for both tandem and HATS MLPs, it is the adapted versions which give
higher CV accuracy. Additionally, it was found that these MLPs converged much
more rapidly, achieving close to highest CV accuracy within the first epoch of
training.

Despite the higher CV accuracy of the 10% version, it is the 5% MLPs which
lead to the lowest WERs, and are used for the recognition results presented
below in Table 3. The results are from a first-pass decoding using a three-gram
LM with a lexicon of about 49,000 words. See [12] for more details about the
Mandarin system.

Table 3 gives recognition WERs for the 2004 development and evaluation sets
for the GALE Mandarin Broadcast News recognition task. The development set
was used to tune decoding parameters, including language model scale factor
and a scaling of Gaussian likelihoods.

Performance for the system without MLP-based features is 9.5% and 19.5%
WER for the dev and eval sets respectively. The results using MLPs trained
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Table 3. Results (WER) on the dev-04 and eval-04 data sets. Adaptation uses the
3-layer MLPs.

WER (%)
dev-04 eval-04

no MLP 9.5 19.5

Chinese (97 hours) 8.2 18.2
Chinese (440 hours) 8.0 17.9

adapted (97 hours) 7.7 18.0

on 97 and 440 hours of data from a random initialization are given, with those
trained on 440 hours giving a slightly lower error rate of 8.0% and 17.9% on the
dev and eval sets respectively. The adapted MLPs give the lowest error of any
on the development set, and all results are very similar on the evaluation data.

5 Discussion

Mismatch of training and testing data frequently has a significant impact on the
performance of ASR systems. However, when porting a system from one domain
to another, it is usual to take advantage of previously trained models and adapt
the Gaussian mixture models associated with each state to the new domain. In
this work we have shown that similarly, it is advantageous to utilize a previously-
trained MLP and adapt to the new domain. For example, at completion of all
decoding passes, the WER using MLPs trained from a random initialization
was 35.2%, compared to 33.2% when adapting from CTS. In addition, the MTL
MLPs gave a lower WER, from 35.2% to 34.3%. This suggests that strategies
which combine adaption with multi-task learning may prove useful. For example,
extra output and (possibly hidden) units could be added to the CTS MLPs to
provide a speech enhancement mapping prior to training on the target data.

The results were less conclusive on the cross-lingual adaptation to Mandarin
Chinese, though there is some evidence that given a relatively small amount of
target data (e.g., 97 instead of 440 hours), it is preferable to adapt from English
rather than train MLPs with random initialization. This suggests that there may
be potential for sharing hidden representations between languages in order to
increase available data.

Additionally, for the MLPs trained on the Mandarin data from a random
initialization, it was found that smaller MLPs (free parameters set to be 5%
rather than 10% of the total training frames) gave the best performance. This
results in an MLP with a hidden layer of 4232 units, compared with 20800 in the
adapted version. In this type of adaptation, we are considering the input-hidden
layer as a general speech pattern classifier, and the hidden-output as a mapping
to the particular set of outputs. Initializing with a ready-trained input-hidden
layer makes it possible to train many more free parameters.
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The results presented in this paper show that whilst mismatch in training
and testing domains leads to performance degradations (e.g. nearfield MLPs on
farfield data), there are sufficient commonalities to find a benefit from transfer
learning. This may be due to the larger MLP structures which can be supported
by pooling data from various sources.
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Abstract. The paper presents the Brno University of Technology (BUT)
system for indexing and search of speech, combining LVCSR and phonetic
approach. It brings a complete description of individual building blocks
of the system from signal processing, through the recognizers, indexing
and search until the normalization of detection scores. It also describes the
data used in the first edition of NIST Spoken term detection (STD) evalua-
tion. The results are presented on three US-English conditions - meetings,
broadcast news and conversational telephone speech, in terms of detection
error trade-off (DET) curves and term-weighted values (TWV) metrics
defined by NIST.

1 Introduction

Search in speech is an important subfield of speech processing with numerous
applications in multi-modal storage and accessing of meetings, eLearning and
defense and security. This paper describes the Brno University of Technology
(BUT) system for indexing and search of speech, combining two techniques:

– Large vocabulary continuous speech recognition, where the recognition and
indexing unit is a word.

– Phoneme recognition, where phonemes are recognized, and, for faster access,
tri-phoneme sequences are indexed.

The theoretical basis of the search were described in [1] and we do not deal with
them in detail in this paper. Here, we concentrate on the BUT submission for
the NIST Spoken Term Detection (STD) Evaluations organized for the first time
in 2006. The paper contains a complete step-by-step description of BUT system
and discusses the results on NIST STD data. Moreover, new evaluation measures
defined by NIST are described and we deal in detail with the normalization of
scores needed in the case, where a single detection threshold is used for scoring
the results for all the searched terms.

The paper is organized as follows: section 2 describes the data and evaluation
metrics introduced for the 2006 NIST STD evaluation. Section 3 details the
BUT system from the recognizers to the normalization of final scores. Section 4
present and discusses the results and 5 concludes the paper.

A. Popescu-Belis, S. Renals, and H. Bourlard (Eds.): MLMI 2007, LNCS 4892, pp. 237–247, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 NIST STD Evaluations 2006

The first edition of Spoken term detection evaluation was organized to facilitate
research and development of technology for finding short word sequences rapidly
and accurately in large heterogeneous audio archives [2]. In this paper, we will
deal with STD for US English1.

2.1 Data

There were three kinds of data with the following amounts available for both
the development and evaluation:

– broadcast news (BCN) – 2.2 hours,
– conversational telephone speech (CTS) – 3 hours
– meeting speech (MTG) recorded over multiple distant microphones (MDM)

– 2 hours.

For all sets, NIST has defined 1100 search-terms2 having 1, 2, 3 and 4 words:

– 42 of them do not appear in any of BCN, CTS and MTG data
– 898 of 1100 appear in BCN with ≈4900 occurrences
– 411 of 1100 appear in CTS with ≈5900 occurrences
– 241 of 1100 appear in MTG with ≈3700 occurrences
– 160 of 1100 appear in all three BCN, CTS and MTG.

Examples of terms are:
“dr. carol lippa”, “bush’s father george bush”, “thousand kurdish”, “senator
charles”, “nato chief”, “every evening”, “kostunica”, “audio”, “okay”.

2.2 Evaluation Metrics

The main mean for comparison of different systems were detection error trade-
off (DET) curves, displaying, for various detection thresholds θ, the false alarm
probability PFA(θ) on x-axis and miss probability PMISS(θ) on the y-axis:

PMISS(θ) = avg
term

{1 − Ncorrect(term, θ)/Ntrue(term)} (1)

PFA(θ) = avg
term

{Nspurious(term, θ)/NNT (term)} (2)

where Ncorrect(term, θ) is the number of correct detections of term with a score
greater or equal to θ, Nspurious(term, θ) is the number of spurious (incorrect)
detections of term with a score greater or equal to θ, Ntrue(term) is the number
of occurrences of term in corpus and NNT (term) is the number of opportunities

1 Arabic and Mandarin were the two other languages analyzed in this evaluation.
2 “quoted” queries where “quoted” refers to Google and similar search engines and

means that no other word(s) can appear inside the query.
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Fig. 1. Scheme of BUT system for NIST STD 2006 evaluations

for incorrect detection of term which is equal to length of the corpus in seconds
minus Ntrue(term).

NIST defined so called Term-Weighted Value TWV (θ) metric to “score” a
system by one number. Term weighted value is evaluated by first computing the
miss and false alarm probabilities for each term separately, then using these and
a pre-determined prior probability to compute term-specific values, and finally
averaging these term-specific values over all terms to produce an overall system
value:

TWV (θ) = 1 − avg
term

{PMISS(term, θ) + 99.9 PFA(term, θ)}

The threshold θM is found on development data by maximizing TWV (θ).
TWV (θM ) is then computed on evaluation data with θM threshold and denoted
as ATWV (see evaluation plan [2] for further details).

3 BUT System

The overall scheme of BUT system is on Figure 1. The following subsections
detail the individual components of the system as well as the training data used.

3.1 Signal Processing

First, all NIST speech files were converted to raw format using sox. Segment-
ing speech into speech and silence was done by our neural net based phoneme
recognizer [6]. All phoneme classes were linked to ‘speech’ class. CTS data were
segmented according to energy in channels and speech/non-speech segmentation.
The diarization for BCN and MTG data was done by David van Leeuwen. He
used a Bayesian Information Criterion (BIC) based speaker segmentation and
clustering system developed for the AMI RT06s speaker diarization evaluation
[3]. 12 Perceptual Liner Prediction (PLP) features plus log energy were used as
features, and he modeled clusters using a single Gaussian with full covariance
matrix.
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The data was split into shorter segments using the following heuristics:

1. in silences longer than 0.5s (output of speech/non-speech detector),
2. when speaker changed (in BCN and MTG),
3. if a segment was longer than 1 minute, it was split into 2 parts in silence

closest to the center of segment.

3.2 Recognition

Segmented data was than processed by word (LVCSR) and phoneme (PHN)
recognizers.

LVCSR – the general scheme. The STD 2006 LVCSR system is a simplified
version of AMI LVCSR system3 used for NIST RT 2006 evaluations [4]. It has
has same structure for all tasks: CTS, BCN and MTG; the differences lie in
acoustic and language models only. The scheme of LVCSR is on Fig. 2. The
system operates in 3 passes of feature extraction and recognition:

In the first pass (P1), the front-end converts the segmented recordings into
feature streams, with vectors comprised of 12 Mel-frequency Perceptual Liner
Prediction (MF-PLP) features and raw log energy, first and second order deriva-
tives are added. After, a cepstral mean and variance normalization (CMN/
CVN) is performed on a per-channel basis with given segmentation. The first
decoding pass yields initial transcripts that are subsequently used for estimation
of vocal tract length normalization (VTLN) warping factors. The feature vectors
and CMN and CVN are re-computed.

The second pass (P2) processes the new features and its output is used to
adapt models with maximum likelihood linear regression (MLLR). Bigram lat-
tices are produced and re-scored by trigram and four-gram language model.

In the third pass (P3), posterior features [6,5] are generated. The output from
the second pass is used to adapt models with Constrained MLLR (CMLLR)
and MLLR. The bigram lattices with posterior features are produced and finally
re-scored with trigram and four-gram language model.

Feature extraction and acoustic modeling. All systems use standard cross-
word tied states HMM using Mel-PLP’s generated in classical way with:

– 23 filter-bank channels for BCN and MTG system
– 15 filter-bank channels for CTS,

The resulting number of cepstral coefficients is always 13. The following tech-
niques are used in HMM training:

– CMN/CVN is applied per speaker
– VTLN warping factors are computed using Brent search method and features

are recomputed
3 The LVCSR was developed in cooperation with AMI-project partners, see
http://www.amiproject.org.
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– Deltas, double-and triple-deltas are added into the basic PLP feature stream,
so that the feature vector has 52 dimensions. Heteroscedastic linear discrim-
inant analysis (HLDA) is estimated with Gaussian components as classes.
HLDA is estimated to reduce the dimensionality to 39.

– Posterior features - two kinds of posterior features are used:

LC-RC Posterior features. The LC-RC system [6] splits 310 ms temporal context
in each filter-bank output into two halves and each half is processed by one neural
net (NN) producing phoneme-state posteriors. These are merged by the third
neural net. The resulting vector size is 135 (45 phonemes each with 3 states).
After log and dimensionality-reduction by Karhunen-Loeve transform (KLT) to
70 dimensions (this step was necessary to fit the following HLDA statistics into
memory), HLDA is estimated with Gaussian components as classes. HLDA was
estimated to reduce the dimensionality to 25.

The resulting features are concatenated with PLP feature stream (25+39=64)
and mean and variance normalized. The procedure is outlined in Fig. 3.

Bottle-neck LC-RC features. Bottleneck LC-RC differ from basic LC-RC in the
last NN: the merger. It is a 5-Layer NN with middle layer containing 35 neurons
only [5]. Non-linearly compressed information here is used as output. The HLDA
is estimated to de-correlate and to reduce the dimensionality from 35 to 25.

Again, the resulting features are concatenated with PLP features (25+39=64)
and mean and variance normalized.
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Training of posterior features. At first, the neural network training with CMN/
CVN at the input was done on 30h of VTLN normalized data used for training of
LVCSR acoustic models. Using these nets, full features were generated for all the
data. The output was concatenated with PLP VTLN HLDA feature stream. The
CMN/CVN were recomputed again and the models were trained by single-pass
re-training. Further, the models were re-clustered and trained by the mixing-up
procedure from 1 to N Gaussians. The optimal numbers of Gaussians were tuned
for each task independently, the resulting numbers of Gaussians are 18 for MTG
and BCN, 26 for CTS.

Speaker-adaptive training (SAT). One single CMLLR transform was trained
per each meeting channel. Features were mapped to unique SAT space by CM-
LLR and 8 iterations of ML-training (standard Baum-Welch) were run. After,
new CMLLR transforms were trained, features transformed and 8 ML-iterations
followed. And once more, so that the number of CMLLR+re-training macro-
iterations was 3.

Discriminative training. The models were re-trained in 15 iterations of Min-
imum Phone-Error (MPE) training [8]. The alternative hypotheses for MPE
were generated by much simpler system including just ML-trained models on
PLP+HLDA without any adaptation. In case of SAT-MPE-training, we did not
re-train the CMLLR transforms.

Table 1 outlines the acoustic models used in P1–P3 for different tasks.
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Table 1. The acoustic models used in different steps for each task

task P1 P2 P3

BCN Basic PLP HMM VTLN HLDA MPE VTLN LC-RC SAT MPE
MTG Basic PLP HMM VTLN HLDA MPE VTLN Bottleneck-LC-RC SAT MPE
CTS HLDA VTLN HLDA MPE VTLN Bottleneck-LC-RC SAT MPE

Language models. The training of 4-gram language models was done at Uni-
versity of Sheffield by Vincent Wan. See below for the training data used. All
language models were trained using the same data. The perplexity was maxi-
mized for each task independently.

Phoneme models. Phoneme recognition was based on the same features and
models as LVCSR. Only the recognition network was changed to context depen-
dent phoneme (triphone) loop (with context independent output ie. the output
is phonemes) with phoneme bigram language model.

Decoding and posterior pruning. The decoding was performed using the
standard LVCSR decoder HDecode from University of Cambridge. Generated
lattices took significant space, so the posterior pruning was used for lattice size
reduction. LVCSR and PHN lattices were pruned using different pruning factors.

3.3 Indexing

Word lattices are converted to forward index: each word-hypothesis (the word,
its confidence, time and nodeID in the lattice file) is stored in a hit list. For-
ward index is then converted to inverted index which is sorted by words and by
confidences of hypothesis. To save space and gain in speed of access, lattices are
converted to binary format [1]. Phoneme lattices are also converted to forward
index, the indexing units are phoneme trigrams (tri-phonemes). Forward index
is also sorted to inverted index and lattice are converted to binary format.

3.4 Search

The term is first split to words (tokens). These are checked against the LVCSR
dictionary and divided into in-vocabulary (IV) and out-of-vocabulary (OOV).

IV tokens are searched in inverted word-index to estimate their position in
latices and then they are verified in the lattice (using token passing).

OOV tokens are converted to phonemes. Automatic grapheme-to-phoneme
(G2P) tool based on rules is used for the conversion. Then the phoneme string
is split to a train of overlapped tri-phonemes. Then they are also searched in
inverted index (phoneme) and verified in lattice (phoneme). OOVs shorter than
3 phonemes (in total) are not searched and are dropped.
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If all tokens are successfully verified, the time and score is produced. Score is
computed as the sum of IV (LVCSR) part and OOV (PHN) part. IV scores are
computed (by Viterbi approximation) using likelihood ratio in word lattice and
then normalized. OOV scores are computed (by Viterbi approximation) using
likelihood ratio in phoneme lattice and then normalized.

3.5 Summary of Training Data

The training data for acoustic models was the following:

– for BCN, the ihmtrain05 training set from NIST RT’06 evaluations [4] was
used - it is a mixture of four meeting corpora, the NIST, ISL, ICSI and a
preliminary release of the AMI corpus. In total, there are 112h of data. No
BCN data were used.

– for MTG, the mdmtrain05 training set from NIST RT’06 evaluations [4] was
used. The crosstalk parts were removed and beam-forming to one super-
channel was done. In total, there are 63h of speech.

– for CTS, ctstrain04 - a subset of h5train03 set defined at Cambridge was
used, in total 277h.

For language model training, done by Vincent Wan at the University of
Sheffield, several resources were used (the numbers give the size of the corpus in
megawords): Swbd/CHE 3.5, Fisher 10.5, Web (Swbd) 163, Web (Fisher) 484,
Web (Fisher topics) 156, BBC - THISL 33, HUB4-LM96 152, SDR99-Newswire
39, Enron email 152, ICSI/ISL/NIST/AMI 1.5, Web (ICSI) 128, Web (AMI)
100, Web (CHIL) 70.

Grapheme to phoneme transcription rules were trained on AMI and BEEP
pronunciation dictionaries.

The phoneme recognizer for segmentation was trained on Hungarian Speec-
hDat-E [7] for BCN, ihmtrain05 for BCN and mdmtrain05 for MTG. LC-RC
and Bottle-neck nets for generation of posterior features used the same training
data as acoustic models.

3.6 Normalization

The normalization serves to make scores of different queries comparable (note
that NIST scores STD systems with one single threshold). Our normalization is
based on contributions of phonemes to normalization factors:

sN (KW ) = s(KW ) − G − F len(KW ) − P1|p1| + ... + PK |pK |,

where s(KW ) is raw score of the keyword, sN (KW ) is the normalized score,
len(KW ) is length of the keyword and |p1| . . . |pK | are counts of individual
phonemes in the keyword. G (a constant), F (length-dependent factor) and
P1 . . . PN (phoneme-dependent factors) need to be trained: First, for large set
of keywords, we derive scores for hits and false alarms (FA) on the development
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set. The scores corresponding to each keyword are used to construct pairs of
(HIT, FA). For each pair, an equation is generated:

s(HIT ) + s(FA)
2

= G + F len(HIT ) + P1|p1| + ... + PK |pK |,

where the left side represents an optimal threshold for given (HIT, FA) pair.
We solve the over-defined set of equations in minimum square error sense and
use the resulting factors to normalize scores.

The normalization coefficients were trained on the respective (BCN, CTS,
MTG) part of NIST STD 2006 development data.

4 Results

The results of LVCSR systems for different tasks in terms of word error rate
(WER) evaluated on the development sets, are the following: BCN 21.03%, CTS
22.83% and MTG 46.65%. The oracle results obtained by scoring the path in
lattice that matches the best the reference, are respectively: BCN 9.06%, CTS
8.32% and MTG 21.79%. It is obvious that while BCN and CTS results are good
and comparable to the state-of-the-art, the recognition on meetings is worse.
This is due to the MDM condition, for which all the systems in NIST RT’06
evaluation performed quite poorly.
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Table 2. Minimum (M) TWV and actual (A) TWV values for individual and merged
systems

task EVAL ATWV EVAL MTWV EVAL MTWV DEVEL MTWV
Merged Merged LVCSR Merged

BCN 0.654 0.655 0.630 0.702
CTS 0.523 0.534 0.530 0.558
MTG 0.054 0.073 0.069 0.295

The STD results on all three conditions in terms of DET curves on develop-
ment data can be seen in Fig. 4 and the results in terms of TWV are summarized
in Table 2. First, we can see that the results on meetings are even worse than
for the development data suggesting a problem with the data. Unfortunately, we
are not able to analyze this in detail, as NIST does not intend to provide word
transcriptions for the evaluation data.

In the other tasks, the results were satisfactory and we have seen the actual
TWV not differing substantially from minimum TWV – a sign of good estimation
of the optimal threshold.

Except for BCN, we see minimum effect of merging phonetic search with
LVCSR, this is however caused by the term-lists provided – in CTS data, we
have counted only 6 OOVs out of all 1100 requested terms.

5 Conclusions

The STD evaluation confirmed the usability of our STD system and provided
us with the opportunity to compare it to other labs working in the field. The
evaluation provided us also with several technical lessons, such as that using 4-
gram expansion is only slightly better than 3-gram expansion, posterior pruning
of LVCSR lattices shortens DET but does not decreases TWV significantly, etc.

In future, we need to work on the normalization - the scheme we implemented
is a basic one, we can experiment with NN, calibration methods, etc.

CPU time and memory footprint needed are also the primary issue – despite its
good accuracy, our system was far too slow compared to the other in the evaluation.

When designing the system for a real oriented user, we also need to take into
account other user requirements, such as signal pre-processing, entering queries
and combination with other speech search modalities.
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Abstract. This paper proposes an analysis technique for wide-band au-
dio applications based on the predictability of the temporal evolution
of Quadrature Mirror Filter (QMF) sub-band signals. The input audio
signal is first decomposed into 64 sub-band signals using QMF decom-
position. The temporal envelopes in critically sampled QMF sub-bands
are approximated using frequency domain linear prediction applied over
relatively long time segments (e.g. 1000 ms). Line Spectral Frequency pa-
rameters related to autoregressive models are computed and quantized
in each frequency sub-band. The sub-band residuals are quantized in
the frequency domain using a combination of split Vector Quantization
(VQ) (for magnitudes) and uniform scalar quantization (for phases). In
the decoder, the sub-band signal is reconstructed using the quantized
residual and the corresponding quantized envelope. Finally, application
of inverse QMF reconstructs the audio signal. Even with simple quanti-
zation techniques and without any sophisticated modules, the proposed
audio coder provides encouraging results in objective quality tests. Also,
the proposed coder is easily scalable across a wide range of bit-rates.

Index Terms: Audio coding, Frequency Domain Linear Prediction
(FDLP), Perceptual Evaluation of Audio Quality (PEAQ).

1 Introduction

Digital audio representation brings many advantages including unprecedented
high fidelity, dynamic range and robustness in mobile and media coding applica-
tions. Due to the success provided by first generation digital audio applications,
such as CD and DAT (digital audio tape), end-users expect CD-quality audio
reproduction from any digital system.

Furthermore, emerging digital audio applications for network, wireless, and
multimedia computing systems face a series of constraints such as reduced and
variable channel bandwidth, limited storage capacity and low cost.
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IP networks, as a modern service platform, introduce new possibilities for
the customer. As a consequence, new non-traditional services such as live audio
and video streaming applications become popular (e.g. radio and TV broadcast
over IP, multicast of a lecture, etc.). For example, unlike the present situation,
audio and video consumed only 2% of Internet traffic in 2000. There are many
reasons for this strong increase of audio and video traffic, such as faster Inter-
net access, increased popularity of peer-to-peer applications (70% of the current
Internet traffic), digital radio broadcasting on the web, technological advance-
ments in soundcards and speakers, and development of high-quality compression
techniques.

Interactive applications such as videophone or interactive games have a real-
time constraint. This imposes a maximum acceptable end-to-end latency of the
transmitted information, where end-to-end is defined as: capture, encode, trans-
mit, receive, decode and display. The maximum acceptable latency depends on
the application, but often is of the order of 150 ms. However, non-interactive ap-
plications have looser latency constraints, for example even a few seconds. The
critical constraints are reduced errors in transmission, lesser breaks in continuity,
and the overall signal quality.

This paper mainly focuses on audio coding for non-interactive applications. A
novel speech coding system, proposed recently [1], exploits the predictability of
the temporal evolution of spectral envelopes of a speech signal using Frequency-
Domain Linear Prediction (FDLP) [2,3]. Unlike [2], the approach proposed in [1]
applies FDLP to approximate relatively long (up to 1000 ms) segments of the
Hilbert envelopes in individual frequency sub-bands. This approach was ex-
tended for wide-band applications (from 8 kHz up to 48 kHz) by including higher
frequency sub-bands [4]. However, many difficulties arise specifically due to the
need to pre-process and encode 1000 ms of a full-sampled input signal in each
frequency sub-band. Efficient transmission of sub-band residual signals is also a
challenge. This paper attempts to address most of these issues.

In contrast to the previous approaches [1,4], this paper proposes the use of
FDLP on the sub-band signal instead of the full-band signal. First, the input
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Fig. 1. QMF-FDLP encoder structure (f - frequency domain, t - time domain)



250 P. Motlicek et al.

signal is decomposed into frequency sub-bands using the maximally decimated
QMF bank. Then, FDLP technique is applied in each critically sampled fre-
quency sub-band independently. The Line Spectral Frequencies (LSFs) as well
as the spectral components of the residual sub-band signals are quantized. The
interesting properties of this novel coding scheme are shown and the first ver-
sion of a variable bit-rate audio encoder based on QMF - FDLP techniques is
proposed.

The rest of the paper is organized as follows: Section 2 provides a brief
overview of the FDLP principle. Section 3 describes the QMF - FDLP codec.
Simulation results and audio quality evaluations are given in Section 4, followed
by conclusions and discussions in Section 5.

2 FDLP

The novelty of the proposed audio coding approach is the employment of FDLP
method to parameterize the Hilbert envelope (squared magnitude of an analytic
signal) of the input signal [2,3]. FDLP can be seen as a method analogous to
Temporal Domain Linear Prediction (TDLP). In the case of TDLP, the AR
model approximates the power spectrum of the input signal. The FDLP fits an
AR model to the squared Hilbert envelope of the input signal. Using FDLP,
we can adaptively capture fine temporal nuances with high temporal resolution
while at the same time summarizing the signal’s gross temporal evolution at
time scales of hundreds of milliseconds. In our system, we employ the FDLP
technique to approximate the temporal envelope of sub-band signals in QMF
sub-bands.

3 Structure of the Codec

The first version of the coder based on FDLP for very low bit-rate narrow-
band applications was proposed in [1]. The input speech signal was split into
non-overlapping segments (hundreds of ms long). Then, each segment was DCT
transformed and partitioned into unequal segments to obtain critical band-sized
sub-bands. Finally, the DCT components which correspond to a given critical
sub-band were used for calculating the FDLP model for that band. Since the
FDLP model did not approximate the squared Hilbert envelope perfectly, the
remaining sub-band residual signal (the carrier signal for the FDLP-encoded
Hilbert envelope) was further processed and its frequency components (obtained
by Fourier transform) were selectively quantized and transmitted.

However, the sub-band residuals, obtained by the the employed sub-band
decomposition described in [1], are still complex signals. High coding efficiencies
cannot be achieved (e.g. the sub-band residuals are oversampled) and henceforth,
large bit-rate is required for high quality coding. In addition, this system is
computationally expensive.

The following experiments, performed with audio signals sampled at 48 kHz,
were motivated by the MPEG-1 architecture [5,6]. In the MPEG-1 encoder,
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the input signal is first decomposed into critically sub-sampled frequency sub-
bands using a QMF bank (a polyphase realization), whose channels are uniformly
spaced. In our system, the same operation is performed on the input signal. The
band-pass outputs are decimated by a factor M (the number of sub-bands),
yielding the sub-band sequences which form a critically sampled and maximally
decimated signal representation (i.e. the number of sub-band samples is equal to
the number of input samples). The QMF filters have a flat pass-band response,
which is advantageous for exploiting the predictability of frequency components
of sub-band signals.

In the proposed coder, we employ 64 band decomposition compared to MPEG-
1 standard having 32 frequency sub-bands. The parameters representing the
FDLP model in each sub-band are not expensive from the final bit-rate point of
view. The use of a higher number of sub-bands provides the following advantages:

1. Sub-band residuals are more frequency limited, and are easier to quantize
using split VQ.

2. It is more advantageous when a psychoacoustic model (in the future) is
employed to attenuate perceptually irrelevant frequency sub-bands.

3. Slightly better objective results.

The structure of the encoder and the decoder is depicted in figure 1 and 2,
respectively.

3.1 Time-Frequency Analysis

The input signal is split into 1000 ms long frames. Each frame is decomposed
into 64 sub-bands by QMF. A 99-th-order prototype filter with the direct-form
FIR polyphase structure is used for the frequency decomposition. The prototype
filter was designed for high sidelobe attenuation in the stop-band of each analysis
channel (around 78 dB), which ensures that intraband aliasing due to quantiza-
tion noise remains negligible. The magnitude and phase frequency response of



252 P. Motlicek et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−180

−140

−100

−60

−20

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

−900

−700

−500

−300

−100

100

P
ha

se
 (

de
gr

ee
s)

Magnitude

Phase

Fig. 3. Magnitude and phase frequency response of the QMF prototype filter

the FIR filter is depicted in figure 3. In order to perform decomposition into 64
sub-bands, a cascade implementation of 2 band QMF decomposition provided
by the prototype filter is utilized. The algorithmic delay of the implementation
is around 130 ms.

3.2 Critically Sampled Sub-band Processing

Each sub-band is DCT transformed which yields the input to the FDLP module.
The magnitude frequency response of AR model, computed through the autocor-
relation LPC analysis on the DCT transformed sub-band signal, approximates
the squared Hilbert envelope of the 1000 ms sub-band signal. Spectral Transform
Linear Prediction (STLP) technique [7] is used to control the fit of AR model
to the Hilbert envelope of the input. The associated FDLP-LSF parameters are
quantized and then transmitted.

The 1000 ms residual signal in each critically sampled sub-band, which repre-
sents the Hilbert carrier signal for the FDLP-encoded Hilbert envelope, is split
into five overlapping sub-segments 210 ms long with 10 ms overlap. This is to take
into account the non-stationarity of the Hilbert carrier over the 1000 ms frame.
An overlap length of 10 ms ensures smooth transitions when the sub-segments of
the residual signal are concatenated in the decoder. Finally, each sub-segment is
DFT transformed which results in 79 complex spectral components distributed
over 0 Hz to Fs/2 (= 375 Hz) with a frequency resolution of 4.75 Hz. The mag-
nitude and phase components of the complex spectral representations are then
quantized and transmitted to the decoder.
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3.3 Quantization of Parameters

Quantization of LSFs: The LSFs corresponding to the AR model in a given
frequency sub-band over the 1000 ms input signal are vector quantized. In the
experiments, a 20th order all-pole model is used. The total contribution of the
FDLP models to the bit-rate for all the sub-bands is around 5 kbps.

Quantization of the magnitude components of the DFT transformed sub-
segment residual: The magnitude spectral components are vector quantized.
Since a full-search VQ in this high dimensional space would be computation-
ally infeasible, split VQ approach is employed. Although the split VQ approach
is suboptimal, it reduces computational complexity and memory requirements
to manageable limits without severely affecting the VQ performance. We divide
the input vector of spectral magnitudes into separate partitions of a lower di-
mension. The VQ codebooks are trained (on a large audio database) for each
partition using the LBG algorithm. Quantization of the magnitude components
using the split VQ takes around 30 kbps for all the sub-bands.
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approximation. (b) Magnitude Fourier spectral components of the 200 ms residual sub-
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version (the components which are not selected for quantization by the adaptive thresh-
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Quantization of the phase components of the DFT transformed sub-segment
residual: It was found that the phase components are uncorrelated across time.
The phase components have a distribution close to uniform, and therefore, have
a high entropy. Hence, we apply a 4 bit uniform scalar quantization for the phase
components. To prevent excessive consumption of bits to represent phase coeffi-
cients, those corresponding to relatively low magnitude spectral components are
not transmitted, i.e., the codebook vector selected from the magnitude codebook
is processed by adaptive thresholding in the encoder as well as in the decoder.
Only the spectral phase components whose magnitudes are above the threshold
are transmitted. The threshold is adapted dynamically to meet a required num-
ber of spectral phase components (bit-rate). The options for reconstructing the
signal at the decoder are:

1. Fill the incomplete phase components with uniformly distributed white noise.
2. Fill the incomplete phase components with zeros.
3. Set the magnitude components corresponding to incomplete phase compo-

nents to zero.

In objective quality tests, it was found that the third option performed the
best. Figure 4 shows time-frequency characteristics of the original signal and the
reconstructed signal for the proposed codec.

3.4 Decoding

In order to reconstruct the input signal, the residual in each sub-band needs to
be reproduced and then modulated by temporal envelope given by FDLP model.

The transmitted VQ codebook indices are used to select appropriate codebook
vectors for the magnitude spectral components. Then, the adaptive threshold is
applied on the reconstructed magnitudes and the transmitted scalar quantized
phase spectral components are assigned to the corresponding magnitudes lying
above the adaptive threshold. 210 ms sub-segment of the sub-band residual is
created in the time domain from its spectral magnitude and phase information.
The Overlap-add (OLA) technique is applied to obtain 1000 ms residual signal,
which is then modulated by the FDLP envelope to obtain the reconstructed
sub-band signal. Finally, a QMF synthesis bank is applied on the reconstructed
sub-band signals to produce the output signal.

4 Experiments and Results

The qualitative performance of the proposed algorithm was evaluated using Per-
ceptual Evaluation of Audio Quality (PEAQ) distortion measure [8]. In general,
the perceptual degradation of the test signal with respect to the reference sig-
nal is measured, based on the ITU-R BS.1387 (PEAQ) standard. The output
combines a number of model output variables (MOV’s) into a single measure,
the Objective Difference Grade (ODG) score, which is an impairment scale with
meanings shown in table 1.
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Table 1. PEAQ scores and their meanings

ODG Scores Quality

0 imperceptible
−1 perceptible but not annoying
−2 slightly annoying
−3 annoying
−4 very annoying

Table 2. PEAQ results on audio samples in terms of ODG scores for speech, speech
over music, music

bit-rate - - - 124 100 64 48

File G-27h Q-32h Q-64h Q-64 Q-64 MP3-LAME AAC+ v1

SPEECH

es01 s -3.579 -1.380 -1.075 -0.811 -1.334 -2.054 -1.054

es02 s -3.345 -1.826 -1.360 -0.820 -1.396 -1.432 -1.175

louis raquin 1 -3.710 -2.785 -2.626 -1.670 -2.484 -1.931 -1.793

te19 -3.093 -1.829 -1.514 -1.016 -1.518 -1.140 -1.152

SPEECH OVER MUSIC

Arirang ms -2.709 -2.056 -2.149 -1.741 -2.703 -1.750 -1.215

Green sm -2.656 -2.588 -2.332 -2.096 -2.765 -1.703 -1.147

noodleking -2.312 -0.777 -0.677 -0.485 -0.705 -1.388 -0.912

te16 fe49 -2.316 -1.028 -1.106 -1.099 -1.678 -1.346 -1.558

te1 mg54 -2.668 -1.343 -1.340 -0.949 -1.487 -1.341 -1.319

twinkle ff51 -2.174 -2.070 -1.705 -1.557 -2.162 -1.519 -0.822

MUSIC

brahms -2.635 -1.157 -1.038 -1.495 -1.788 -1.204 -1.777

dongwoo -1.684 -0.675 -0.583 -0.471 -0.658 -1.369 -0.753

phi2 -2.194 -0.973 -0.696 -0.445 -0.834 -1.735 -0.748

phi3 -2.598 -1.263 -1.058 -0.774 -1.215 -1.432 -0.937

phi7 -3.762 -1.668 -1.635 -3.356 -3.624 -2.914 -1.551

te09 -2.997 -1.353 -1.239 -0.841 -1.490 -1.734 -1.579

te15 -2.006 -0.670 -0.644 -0.545 -0.845 -1.726 -0.995

trilogy -2.002 -0.439 -0.461 -0.509 -0.694 -2.064 -0.951

AVERAGE -2.691 -1.438 -1.291 -1.149 -1.632 -1.655 -1.191

The test was performed on 18 audio signals sampled at 48 kHz. These audio
samples are part of the framework for exploration of speech and audio cod-
ing defined in [9]. They are comprised of speech, music and speech over music
recordings. The ODG scores are presented in table 2.

First, the narrow-band speech coder [1] was extended for audio coding on 48
kHz sampled signal [4], where Gaussian sub-band decomposition (into 27 bands
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uniformly spaced in the Bark scale) is employed. The FDLP model was applied
on these sub-band signals and corresponding sub-band residuals were processed
by adaptive threshold (half of the spectral components were preserved). This
adaptive thresholding is performed to simulate the quantization process. The
ODG scores for this technique are denoted as G-27h.

The results for QMF decomposition into 32 and 64 sub-bands are denoted as
Q-32h and Q-64h, respectively. As in the previous case, the adaptive threshold
is fixed to select half of the spectral components of the sub-band residuals.
Without quantization, Q-32h performs better than G-27h with approximately
the same number of parameters to be encoded. In a similar manner, Q-64h
slightly outperforms Q-32h.

ODG scores for Q-64 with quantization of spectral components of the sub-
band residuals are presented for bit-rates ∼ 124 and ∼ 100 kbps. In both these
experiments, magnitude spectral components are quantized using split VQ (10
codebooks each of dimension 8 with size of 12 bits). Phase spectral components
are scalarly quantized using 4 bits. To reduce the final bit-rates, the number of
phase components to be transmitted is reduced using adaptive threshold (90%
and 60% of phase spectral components resulting in 124 and 100 kbps respec-
tively).

Finally, the ODG scores for standard audio coders: MPEG-1 Layer-3 LAME
[6,10] and MPEG-4 HE AACplus-v1 [11,12], at bit-rates 64 and 48 kbps respec-
tively, are also presented. The AACplus-v1 coder is the combination of Spectral
Band Replication (SBR) [13] and Advanced Audio Coding (AAC) [14] and was
standardized as High-Efficiency AAC (HE-AAC) in Extension 1 of MPEG-4
Audio [15].

5 Conclusions and Discussions

With reference to the ODG scores in table 2, the proposed codec needs to operate
at 100 kbps in order to achieve the similar average quality as the MPEG-1 Layer-
3 LAME standard at 64 kbps. In a similar manner, the proposed codec requires
124 kbps to perform as good as AACplus-v1 codec at 48kbps.

Even without any sophisticated modules like psychacoustic models, spectral
band replication module and entropy coding, the proposed method (at the ex-
pense of higher bit-rate) is able to give objective scores comparable to the state-
of-the-art codecs for the bit-rates presented. Furthermore, by modifying the
adaptive threshold, the proposed technique allows to scale the bit rates, while
for example in MPEG-1 layer-3 such operation is computationally intensive.

The presented codec and achieved objective performances will serve as base-
line for future work, where we will concentrate on compression efficiency. Due to
this reason, we compared the proposed codec with state-of-the-art systems which
provide similar objective qualities. The succeeding version of the codec, having
perceptual bit allocation algorithms (for the carrier spectral components), is
expected to reduce the bit rate considerably yet maintaining the same quality.
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Eventhough, the coder does not employ block switching scheme (thus avoid-
ing structural complications), the FDLP technique is able to address temporal
masking problems (e.g. pre-echo effect) in an efficient way [4]. Another important
advantage of the proposed coder is its resiliency to packet loss. This results from
reduced sensitivity of the human auditory system to drop-outs in a frequency
band as compared to loss of a short-time frame.
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Abstract. Automatic segmentation is an important technology for both
automatic speech recognition and automatic speech understanding.
In meetings, participants typically vocalize for only a fraction of the
recorded time, but standard vocal activity detection algorithms for close-
talk microphones in meetings continue to treat participants indepen-
dently. In this work we present a multispeaker segmentation system
which models a particular aspect of human-human communication, that
of vocal interaction or the interdependence between participants’ on-off
speech patterns. We describe our vocal interaction model, its training,
and its use during vocal activity decoding. Our experiments show that
this approach almost completely eliminates the problem of crosstalk, and
word error rates on our development set are lower than those obtained
with human-generatated reference segmentation. We also observe signif-
icant performance improvements on unseen data.

1 Introduction

Vocal activity detection (VAD) is an important technology for any application
with an automatic speech recognition (ASR) front end. In meetings, participants
typically vocalize for only a fraction of the recorded time. Their temporally
contiguous contributions should be identified prior to speech recognition in order
to associate recognized output with specific speakers (who said what) and to
leverage speaker adaptation schemes. Segmentation into such contributions is
primarily informed by vocal activity detection on a frame-by-frame basis.

This work focuses on VAD for meetings in which each participant is instru-
mented with a close-talk microphone, a task which remains challenging primarily
due to crosstalk from other participants (regardless of whether the latter have
their own microphones). State-of-the-art meeting VAD systems which attempt
to account for crosstalk rely on Viterbi decoding in a binary speech/non-speech
space [12], assuming independence among participants. They employ traditional
Mel-ceptral features as used by ASR, with Gaussian mixture models [1] or multi-
layer perceptrons [6]. Increasingly, such systems are integrating new features,
designed specifically for discriminating between nearfield and farfield speech,
or speaker overlap and no-overlap situations [14]. Research in this field is be-
ing fueled in large part by the Rich Transcription (RT) Meeting Recognition

A. Popescu-Belis, S. Renals, and H. Bourlard (Eds.): MLMI 2007, LNCS 4892, pp. 259–270, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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evaluations organized by NIST1. Generally reported ASR word error rates
(WERs) on NIST RT corpora are still at least 2-3% absolute higher with au-
tomatically generated segments than with manual segmentation [1], a difference
which is significant in the context of overall transcription system performance.

This paper describes an automatic segmentation system which is an extension
to the segmentation component in our NIST RT-06s Speech-to-Text submission
system in the individual head-mounted microphone (IMH) condition for confer-
ence meetings [8]. Both segmentation systems implement a fundamentally dif-
ferent approach from those used in other state-of-the-art transcription systems,
in three main ways. First, we have chosen to address the crosstalk problem by
explicitly modeling the correlation between all channels. This results in a fea-
ture vector whose length is a function of the number of meeting participants,
which may vary from test meeting to test meeting. Because a variable feature
vector length precludes the direct use of exclusively supervised acoustic models,
we have proposed an unsupervised joint-participant acoustic modeling approach
[10]. Second, we employ a model of multi-participant vocal interaction, which
allows us to explicitly model the fact that starting to speak while other partici-
pants are speaking is dispreferred to starting in silence. Finally, as a consequence
of our fully-connected, ergodic hidden Markov model architecture, state duration
cannot be modeled directly. Our analysis window size, an order of magnitude
larger than that in other state-of-the-art systems, is a trade-off between the
desired endpoint granularity and minimum expected talkspurt duration.

Following a description of the new system in Sections 2, 3 and particularly 4,
we compare the system to our NIST RT-06s segmentation system. We show that
our final segmentation system outperforms manual segmentation on our devel-
opment set, effectively treats uninstrumented participants, and leads to WERs
only 2.2% absolute higher on unseen data than with manual segmentation.

2 Computational Framework

The VAD system we use as our baseline was introduced in [10]. Rather than de-
tecting the 2-state speech (V) vs. non-speech (N ) activity of each partipant in-
dependently, the baseline implements a Viterbi search for the best path through
a 2K-state vocal interaction space, where K is the number of participants. Our
state vector, qt, formed by concatenating the concurrent binary vocal activity
states qt [k], 1≥k≥K, of all participants, is allowed to evolve freely over the vocal
interaction space hypercube, under stochastic transition constraints imposed by
a fully-connected, ergodic hidden Markov model (eHMM). Once the best vocal
interaction state path q∗ is found, we index out the corresponding best vocal
activity state path q∗ [k] for each participant k. The underlying motivation for
this approach is that it allows us to model the constraints that participants exert
on one another; it is generally accepted that participants are more likely to begin
vocalizing in silence than when someone else is already vocalizing [4].

1 http://www.nist.gov/speech/tests/rt/
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Fig. 1. Segmentation system architecture

The architecture of the proposed segmentation system is depicted in Figure 1.
Tasks associated with its operation, shown as rectangles in the figure, include:

1. VIM TRAINING: training of a conversation-independent vocal interaction
model (Section 4);

2. PASS 1: initial label assignment (ILA) for the test audio (Section 3.1);
3. AMTRAINING: training of conversation-specific acousticmodels (Section3.2)

using the test audio and the labels from (2);
4. PASS 2: simultaneous Viterbi decoding of all participant channels, using

the vocal interaction model from (1) and the acoustic models from (3); and
5. PASS 3: smoothing VAD output to produce a segmentation suitable for

ASR.

Space constraints prohibit a comprehensive description of each task or compo-
nent. We only briefly describe the multiparticipant IHM acoustic model in the
following section. In Section 4, we detail the structure of the proposed vocal
interaction model, and outline its training and use during decoding.

3 Unsupervised Multispeaker IHM Acoustic Modeling

3.1 Initial Label Assignment

We perform an unsupervised initial assignment of state labels to multichannel
frames of audio using the heuristic

q̃ [k] =

⎧
⎪⎨

⎪⎩

V , if
∑

j �=k

log
(

maxτ φjk (τ)
φjj (0)

)
> 0

N , otherwise
, (1)

where φjk (τ) is the crosscorrelation between IHM channels j and k at lag τ ,
and q̃ [k] is the initial label assigned to the frame in question. We have shown,
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in [11], that under certain assumptions the criterion in Equation 1 is equivalent
to declaring a participant as vocalizing when the distance between the location
of the dominant sound source and that participant’s microphone is smaller than
the geometric mean of the distances from the source to each of the remaining
microphones.

3.2 Acoustic Model Training

The initial label assignment described in Equation 1 produces a partitioning of
the multichannel test audio. The labeled frames are used to train a single, full-
covariance Gaussian for each of the 2K states in our search space, over a feature
space of 2K features: a log-energy and a normalized zero-crossing rate for each
IHM channel. Features are computed using 110 ms non-overlapping windows,
following signal preemphasis

(
1 − z−1

)
.

For certain participants, and especially for frames in which more than one
participant vocalizes, the ILA may identify too few frames in the test meeting
for standard acoustic model training. To address this problem, we have proposed
and evaluated two methods: feature space rotation, and sample-level overlap
synthesis. Due to space constraints, we refer the reader to [10] for a description.
We only mention here that the methods are controlled by three parameters,
{λG, λR, λS}, whose magnitudes empirically appear to depend on the number of
features per channel and on the overall test meeting duration.

4 Vocal Interaction Modeling

The role of the vocal interaction model during decoding is to provide estimates of
P (qt+1 = Sj |qt = Si), the probability of transitioning to a state Sj at time t+1
from a state Si at time t. The complete description of the conversation, when
modeled as a first-order Markov process, is an N × N matrix, where N≡2K .
When participants are assumed to behave independently of one another, this
probability reduces to

∏K
k=1 P (qt+1 [k] = Sj [k] |qt [k] = Si [k]). As a result, a

participant-independent description consists of a 2 × 2 matrix.
In this work, we have chosen to not assume that participants behave inde-

pendently. Descriptive studies of conversation [13] and of meetings [4], as well as
computational models in various fields [2][5], have unequivocally demonstrated
that an assumption of independence is patently false. To our knowledge, how-
ever, suitable models of multiparty vocal interaction have not been designed for
or applied to the task of detecting vocal activity for automatic speech recogni-
tion in meetings. A main difficulty is the need to collapse the 2K ×2K transition
probability matrix in a conversation-independent and participant-independent
manner, such that model parameters learned in one conversation will generalize
to unseen conversations, even when the participants are different, and/or when
the number of participants in the train meetings does not match the number of
participants in the test meeting.



Modeling Vocal Interaction for Segmentation 263

4.1 Model Structure

To address this issue, we have proposed the following model of vocal interaction:

P (qt+1 = Sj |qt = Si ) = (2)
P ( ‖qt+1‖ = nj , ‖qt+1 · qt‖ = oij | ‖qt‖ = ni ) ×
P (qt+1 = Sj | ‖qt+1‖ = nj , ‖qt+1 · qt‖ = oij , ‖qt‖ = ni ) ,

where ‖qt‖ represents the number of participants vocalizing at time t, and
‖qt · qt+1‖ represents the number of participants who were vocalizing at time t
and who continue to vocalize at time t+1. Equation 2 introduces some additional
notational shorthand: ni ≡ ‖Si‖ and nj ≡ ‖Sj‖ are the number of vocally active
participants in states Si and Sj , respectively, and oij ≡ ‖Si · Sj‖ ≤ min (ni, nj)
is the number of same participants which are vocally active in both Si and Sj .

The first factor in Equation 2 represents a time-independent, conversation-
independent, and participant-independent model of transition among various
degrees of multiparticipant overlap at times t and t + 1. We refer to this factor
as the Extended Degree of Overlap (EDO) model. In particular, we claim that
the probability of transition between two specific states is proportional to the
probability of transition between the degrees of simultaneous vocalization in
each of them. Furthermore, the term ‖qt · qt+1‖ accounts for participant state
continuity; it allows the probability of the transition {A, B} −→ {A, C} to differ
from that of {A, B} −→ {C, D}, which agrees with intuition. Figure 2 shows
the total number of unique transitions in the EDO space; for reasons of figure
readability, we limit the maximum degree of participant overlap to 2.

‖Si · Sj‖ = 0

‖Si · Sj‖ = 1

‖Si · Sj‖ = 2

‖Sj‖ = 2‖Si‖ = 2

‖Si · Sj‖ = 0

‖Si · Sj‖ = 1

‖Si‖ = 1 ‖Sj‖ = 1

‖Si · Sj‖ = 0

‖Si‖ = 0 ‖Sj‖ = 0

‖qt‖ ‖qt+1‖

Fig. 2. Unique transition probabilities in the EDO model space with at most 2 simul-
taneously vocalizing participants
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Fig. 3. The 7-state Si space for a 3-participant conversation, showing the mapping of
(ni, oij , nj) transition probabilities from the EDO space. The all-silent state ∅ is dupli-
cated for readability; we also show the transitions from only one single one-participant
state ({A}), and from only one single two-participant state. The single three-participant
state is not shown.

The second factor in Equation 2 accounts for the multiplicity of specific next
Sj states that are licensed by a particular EDO state transition (ni, oij , nj). We
illustrate this in Figure 3. As an example, the transitions {A} −→ {A, B} and
{A} −→ {A, C} are both of (ni = 1, oij = 1, nj = 2) EDO transition type,
and they must divide the EDO transition mass between them (for K = 3 par-
ticipants; for K > 3 participants, there are additional next state candidates).
Because we are constructing a participant-independent model, we assume a uni-
form distribution over such candidate next states,

P (qt+1 = Sj | ‖qt+1‖ = nj , ‖qt+1 · qt‖ = oij , ‖qt‖ = ni ) = (3)
(

ni!
oij ! (ni − oij)!

· (K − ni)!
(nj − oij)! (K − ni − nj + oij)!

)−1

,

where K is the number of participants in the test meeting. Equation 3 ensures
that the conditional probabilities in Equation 2, for 1≤j≤N , sum to one.

4.2 Training the EDO Model

To train the EDO model, we use the multi-participant utterance-level segmen-
tation (.mar) from the ISL Meeting Corpus [3], where the number of meetings
is R = 18. As in [10], the references are first discretized into a time-sequence
of states qr

t ; we illustrate this process in Figure 4. The model parameters are
then estimated by accumulating bigram counts from the observed time-sequence,
according to
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P (‖qt+1‖ = nj , ‖qt · qt+1‖ = oij | ‖qt‖ = ni) = (4)
R∑

r=1

Tr−1∑

t=1
ni+nj−oij<K

δ (‖qr
t‖, ni) δ

(‖qr
t · qr

t+1‖, oij

)
δ
(‖qr

t+1‖, nj

)

R∑

r=1

Tr−1∑

t=1
ni+nj−oij<K

δ (‖qr
t‖, ni)

,

where δ (·, ·) is the Kronecker delta, and r indexes training meetings. K is the
number of participants in the test meeting, and is given by the number of IHM
channels to segment; its appearance in Equation 4 is due to the fact that the
EDO model must be recompiled each time K changes. This is because transitions
may occur in the training material which are not possible in a particular test
meeting: for example, a transition of type (ni = 2, oij = 0, nj = 2), such as
{A, B} −→ {C, D}, is not possible for a test meeting of K = 3 participants.

k = 4

N

N

N

N N N N

N N N N N N

N N N N N

N NNNN

V

V

V

V

V

V V

V V
qr

t =

k = 1

k = 2

k = 3

Fig. 4. Assignment of discrete multi-participant values for consecutive frames of qr

from a reference segmentation. A frame is assigned a value V for participant k if k
vocalizes for at least 50% of the frame duration; otherwise, N is assigned.

The estimation of the first term of Equation 2, as proposed in Equation 4,
is participant-independent since, at each time t, only the number of currently
vocalizing participants is inspected, rather than specific participants (as indexed
by k in qt). However, because the amount of vocalization overlap may vary across
meetings or conversation types, the model is biased towards the interactions
patterns observed in the training data; we have addressed this issue by training
on a sizable corpus of meetings. There may be significant scope for selecting
training material based on anticipated vocal interaction style. The model is also
independent of the number of participants in each training or test meeting.
Studies of overlap occurrence in meetings [4] do not report a strong correlation
with participant number; the increased potential for overlap due to larger group
size appears to not be realized in general [7].
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5 Experiments

We assess the performance of our algorithms by directly comparing the WERs
as was done in [1][6]. WERs were produced using our multi-pass NIST RT-06s
Speech-to-Text submission system [8]; however, in the current work, we show
only the first-pass MFCC front end WERs, obtained with our RT-06s develop-
ment language model. We note that an optimistic aim of an automatic segmenter
is to produce WERs achievable with human-produced reference segmentation.

The data used in the described experiments consist of two datasets from the
NIST RT-05s and RT-06s evaluations. Our development set, rt05s eval* (re-
ferred to as confDEV in [8]), is the complete rt05s eval set less one anomalous
meeting (with a participant on speakerphone). We use the complete rt06s eval
as held out unseen data for final evaluation purposes.

The baseline segmenter in these experiments is that used in our NIST RT-06s
submission, which differs from the current system in 4 ways. In this section we
evaluate these four modifications, and present experiments which explore the
impact that vocal interaction modeling has on ASR performance.

5.1 Elimination of Zero-Crossing Rate (ZCR)

The first delta from our RT-06s submission is the elimination of the zero cross-
ing rate feature, whose implementation contained an error and which, following
correction, was shown not to affect WERs. Since this modification reduces the
feature vector size from 2K to K, we have also retuned the acoustic model fac-
tors {λG, λR, λS} on the development set. The negligible effect of this change to
the WER, alongside the performance of the RT06s baseline, is shown in Table 1.

5.2 Frame Step/Size Reduction (F.100)

In a second experiment, we reduced the frame size and step from 0.110s to
0.100s. Since these parameters affect the smoothing pass, we have also modi-
fied the latter to consist of: (1) bridging gaps shorter than 0.45s; (2) eliminating
spurts shorter than 0.25s; and (3) prepadding and postpadding all segments with
0.15s and 0.2s, respectively. The original smoothing consisted of 5 postprocess-
ing passes: (1) bridging gaps shorter than 0.5s; (2) eliminating spurts shorter
than 0.2s; (3) prepadding and postpadding all segments with 0.1s and 0.3s, re-
spectively; (4) bridging remaining gaps shorter than 0.4s; and (5) eliminating
remaining spurts shorter than 0.8s. As in the first experiment, these parameters
were tuned to minimize WER on our development set. Table 1 shows that these
two changes reduce substitutions and deletions on the development set, without
increasing insertions.

5.3 Data Selection for Training the All-Silent State (ILA.0)

A third reduction in the rt05s eval* set WER was achieved by noting that the
ILA algorithm is characterized by high precision but significantly lower recall
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Table 1. First-pass ASR substitutions (sub), insertions (ins), deletions (del), and over-
all WER before rescoring, and overall WER after rescoring in the first pass (WER’).
Detailed ASR errors prior to rescoring are shown because they correlate with frame-
level miss and false alarm rates (not shown) better than do post-rescoring errors. Re-
sults are for our development set rt05s eval*; best automatic and manual performance
shown in bold.

Segmentation sub del ins WER WER’

RT06s baseline 22.5 11.9 4.8 39.2 37.0

– ZCR 21.1 13.7 4.0 38.8 36.9
+ F.100 20.7 12.8 4.0 37.4 35.2
+ ILA.0 21.2 10.8 4.6 36.6 34.2
+ MULT 21.1 11.1 4.3 36.5 34.1

maxOV.4 21.1 11.1 4.3 36.5 34.1
maxOV.3 21.1 11.2 4.3 36.5 34.1
maxOV.2 21.0 11.5 4.3 36.8 34.4

MIP 21.3 11.5 4.4 37.2 34.9

manual refs 24.4 8.3 4.8 37.5 34.4

[9]. This suggests that a large number of frames identified by the ILA as silence
may in fact be missed vocal activity. To test this hypothesis, we chose to use
only 50% of the ILA-identified silence frames for training the all-silent state
model S0. These are selected by picking the bottom two quartiles in terms of
average per-channel log-energy, over all channels. As Table 1 shows, this leads
to a significant reduction in deletions, and produces an overall WER which is
lower than that produced using manual segmentation.

5.4 Sharing Probability Mass Among Candidate Next States
(MULT)

The last delta between our RT-06s submission segmenter and the current sys-
tem is the implementation of Equation 3. In the baseline system, this factor
was ignored in Equation 2. This resulted in more frequent insertions, since the
probability of transitioning to states with a high degree of overlap was not nor-
malized by their multiplicity. This modification reduces the WER further below
that obtained with manual segmentation.

5.5 Robustness and Generalization

In total, the four modifications described above and shown in Table 1 reduce the
WER in the first pass from 37.0% to 34.1%, which surpasses ASR performance
achieved with manual segmentation.

In Table 2, we show the performance of our segmentation system individually
for each meeting in rt05s eval. As mentioned above, the rt05s eval set is
identical to our development set, plus the meeting identified as NIST1. As can
be seen, the performance of the final system exceeds that of the baseline for every
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Table 2. First-pass WERs after rescoring, for individual meetings in rt05s eval

Segm. AMI1 AMI2 CMU1 CMU2 ICSI1 ICSI2 NIST1 NIST2 VT1 VT2 all

RT06s 33.7 47.4 36.8 37.8 34.5 27.6 119.8 37.9 37.7 40.8 45.6

– ZCR 33.8 38.8 37.6 34.5 43.5 27.1 91.1 40.9 34.5 41.9 42.5
+ F.100 33.6 36.3 33.1 34.0 42.3 27.1 91.7 39.5 33.7 38.7 41.1
+ ILA.0 34.0 36.6 32.9 33.9 34.4 27.0 94.8 37.7 34.5 38.4 40.5
+ MULT 33.3 35.7 33.3 33.5 33.0 27.2 83.1 38.3 34.0 40.4 39.2

maxOV.4 33.3 35.7 33.3 33.5 32.9 27.2 84.0 38.3 34.0 40.4 39.3
maxOV.3 33.3 35.8 33.3 33.5 33.0 27.3 81.0 38.3 34.0 40.4 39.0
maxOV.2 33.5 36.1 34.1 33.8 33.6 27.8 66.4 38.7 34.0 39.8 37.8

MIP 33.6 36.5 34.8 33.6 35.2 26.9 69.3 38.8 36.0 40.5 38.5

manual 34.7 39.3 32.9 31.3 25.8 25.3 51.2 44.0 34.3 44.8 36.1

Table 3. First-pass WERs after rescoring, for individual meetings in rt06s eval

Segm. CMU1 CMU2 EDI1 EDI2 NIST1 NIST2 TNO1 VT1 VT2 all

RT06s 36.9 45.1 31.6 33.3 48.1 51.8 42.9 47.8 39.4 42.1

– ZCR 37.1 45.2 35.9 41.1 43.1 49.5 46.9 45.2 37.2 42.6
+ F.100 36.1 45.5 36.3 35.8 43.8 49.7 46.6 44.3 36.0 41.8
+ ILA.0 55.0 42.6 34.6 35.3 42.8 43.5 41.2 44.7 37.0 42.5
+ MULT 36.5 42.9 35.2 46.0 40.9 43.6 40.6 43.7 36.4 40.8

maxOV.4 36.5 42.9 35.0 35.6 40.9 43.6 40.8 43.6 36.0 39.6
maxOV.3 36.5 42.9 35.0 35.6 40.8 43.6 40.8 43.8 36.0 39.6
maxOV.2 36.6 43.1 35.5 35.6 41.0 43.8 40.9 43.4 36.3 39.8

MIP 36.8 43.4 35.4 36.1 41.7 43.6 40.9 44.3 37.6 40.1

manual 37.2 40.0 34.7 32.2 39.7 35.6 41.7 39.3 33.9 37.4

meeting except NIST2. For five meetings (AMI1, AMI2, NIST2, VT1 and VT2),
performance is better with automatic than with human-generated segmentation.

We show a similar analysis in Table 3 for the rt06s eval set. Cumulatively,
our post-evaluation modifications improve performance on all but the two EDI
meetings. These two meetings, together with TNO1, appear to have benefited
from the faulty ZCR feature, and WERs for them never fully recover once that
feature is eliminated. For two of the meetings, CMU1 and TNO1, WERs with
automatic segmentation are lower than those with manual segmentation.

5.6 Impact of Modeling Vocal Interaction

Finally, we show results from several experiments in which we explore the impact
of modeling vocal interaction on ASR performance. In the first, we limit the
state space to states of at most 4 (maxOV.4), at most 3 (maxOV.3), and at
most 2 (maxOV.2) simultaneously vocalizing participants. The results on our
development set are shown in Table 1; those on the complete rt05s eval and
rt06s eval sets are shown in Tables 2 and 3, respectively.
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As can be seen, limiting the maximal degree of overlap always leads to more
deletion errors, although the effect asymptotes after 4-participant overlap is in-
cluded. This partly corroborates the observations on overlap in [4], namely that
more-than-3-participant overlap is extremely rare. However, we note that for
the NIST1 meeting in rt05s eval, which contained a participant without a mi-
crophone and suffered from a large number of ASR insertion errors as a result,
limiting the maximal degree of overlap effectively reduces the insertions. This ef-
fect more than compensates for the slightly increased deletions in the remaining
meetings in that set, such that the overall WER is significantly lower.

We also explore the ASR performance which would be achieved with the
current segmentation system if the transition model probabilities were provided
not by our vocal interaction model but by a model which treats participants in
a mutually independent manner, as in other state-of-the-art meeting segmenters
[1][6]. In the context of our system, such a model would have the form

P (qt+1 = Sj |qt = Si) =
K∏

k=1

P (qt+1 [k] = Sj [k] |qt [k] = Si [k]) . (5)

ASR results using this model are given in Tables 1, 2, and 3 as MIP. It shows
systematically worse performance; on our development set, the WER difference
is 0.8% absolute, while that on the entire rt05s eval is 0.7% absolute. On un-
seen data, the mutually independent participant model leads to a WER which is
0.5% absolute higher. We note that this is a conservative estimate of the differ-
ence; a fair estimate in the context of our system would require acoustic models
for all possible overlap states, whereas our acoustic model training procedure
typically produces models for at most 4-participant overlap. Furthermore, our
full-covariance acoustic models treat participants jointly [10].

6 Conclusions

We have described the automatic segmentation system used in our NIST RT-06s
Speech-to-Text Evaluation submission, together with several improvements. The
system implements a novel approach to segmenting multi-channel, multi-speaker
meeting recordings, in particular in its use of multi-participant acoustic and tran-
sition models. In its current state, the system outperforms human segmentation
in first-pass ASR performance on our development set. The performance on the
complete rt05s eval and rt06s eval sets leads to first-pass WERs which are
1.6%-2.2% absolute higher than with human segmentation, comparing favorably
with other state-of-the-art systems [1][6].
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Abstract. A speech separation system is described in which sources
are represented in a joint interaural time difference-fundamental fre-
quency (ITD-F0) cue space. Traditionally, recurrent timing neural net-
works (RTNNs) have been used only to extract periodicity information;
in this study, this type of network is extended in two ways. Firstly, a
coincidence detector layer is introduced, each node of which is tuned
to a particular ITD; secondly, the RTNN is extended to become two-
dimensional to allow periodicity analysis to be performed at each best-
ITD. Thus, one axis of the RTNN represents F0 and the other ITD allow-
ing sources to be segregated on the basis of their separation in ITD-F0
space. Source segregation is performed within individual frequency chan-
nels without recourse to across-channel estimates of F0 or ITD that are
commonly used in auditory scene analysis approaches. The system is
evaluated on spatialised speech signals using energy-based metrics and
automatic speech recognition.

1 Introduction

When listening in natural environments, the ear is bombarded with energy from
multiple sound sources. Despite these sounds being mixed together, the human
auditory system has the ability to analyse and extract cognitive representations
for the individual sounds that are present—possibly performing this task simul-
taneously for multiple sources. It has been proposed that the acoustic signal
is subjected to an auditory scene analysis in which a number of cues are ex-
tracted and used to segregate sounds on the basis of them ‘belonging’ to same
physical source [1]. Such cues include common periodicity, common onset/offset,
proximity in frequency, etc.

Human speech perception is robust even in very challenging acoustic environ-
ments; conversely, automatic speech recognition (ASR) systems can be suscep-
tible to relatively small changes in the background acoustics. For many years,
there has been interest in developing computational models of auditory scene
analysis (CASA; see [2] for a review) and one use of such models is as an aide to
ASR systems. In this paper, we present a novel technique of computing a joint
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harmonicity-location cue in a neurobiologically plausible manner which can be
used to segregate concurrent talkers and produce a mask for use with ‘missing
data’ automatic speech recognisers [3].

The remainder of this article is organized as follows. The next section describes
the two grouping cues that will be used by our system. Section 3 provides a brief
overview of the competing approaches to neural representations of sounds. Follow-
ing this, recurrent timing neural networks (RTNNs) are described in detail. This
is followed by the implementation details of the auditory front end and the way in
which this is coupled to an array of RTNNs. We present a number of evaluation
techniques which have been used to assess the system and describe their results.
We conclude with a discussion of the presented work and directions for future work.

2 Grouping Cues

2.1 Harmonicity

Fundamental frequency (F0) is a potent grouping cue. When listening, harmoni-
cally related components tend to form perceptual wholes (streams), whereas dif-
ferences in F0 promote segregation. For example, Brokx and Nooteboom found
that listeners were better able to identify two simultaneous speech utterances if
they had different F0s [4].

Further support for the role of F0 in grouping comes from a number of studies
which have investigated the perception of ‘double vowels’. In this paradigm, a
pair of steady-state, synthetic vowels are presented simultaneously, with identical
onset and offset, and subjects are required to identify both vowels. Scheffers
[5] found that listeners were able to identify both simultaneous vowels more
accurately when they were on different F0s than when they were on the same
F0. From these studies, it was proposed that a F0-guided segregation strategy
is used to separate, and subsequently identify, simultaneous sounds.

Despite the fact that listeners’ recognition does improve with increasing F0,
doubt has been cast upon the proposed F0-guided segregation strategy. Bird and
Darwin [6] investigated the mechanisms by which the auditory system exploits F0
differences in separating two sentence-length utterances. They used a stimulus in
which the low-pass part of the target sentence had the same F0 as the high-pass
part of the interfering sentence. The remaining parts shared the same variable
F0. If the auditory system relies on global mechanisms, performance would be
impaired due to inappropriate grouping of low- and high-pass parts. It was found
that listener performance on the band swapped stimuli was the same as on the
unmanipulated stimuli up to 2 semitones. Thus, across-frequency grouping of
components across the low- and high-frequency regions only occurred for F0
differences of 5 semitones and above, but not 2 semitones and below.

2.2 Location

Listeners can also take advantage of the differing signals reaching the two ears
to determine the direction of a sound source [7]. Provided a sound is not in
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the median plane1, sound energy will reach the closer ear slightly before the
further ear and also with a slightly higher intensity. These two cues are referred
to as interaural time difference (ITD) and interaural intensity difference (IID),
the latter caused by ‘shadowing’ due to the head. ITD will be the focus in this
study. ITDs range from 0 s for a sound directly in front of the listener’s head
(i.e., at an azimuth of ±0◦) to about 690μs for a sound directly opposite one of
the ears (i.e., at an azimuth of ±90◦).

In general, the constituent energies of a sound originating from the same loca-
tion will share approximately the same ITD (we note, however, that ITD coher-
ence is eroded in reverberant conditions; see [2, Chap. 7]). Thus, across-frequency
grouping by ITD ought to provide a powerful mechanism for segregating mul-
tiple voices. Indeed, across-frequency grouping by ITD has been employed by
computational models of voice separation (e.g., [8,9]).

However, analogous to F0-based segregation, there is also evidence that across-
frequency grouping does not occur for interaural time difference (ITD). A number
of studies have drawn across-frequency grouping by ITD into question; Edmonds
and Culling [10] studied this using target and interferer pairings each of which
had been low- and high-pass filtered. Even when the low-pass portion of the
target and the high-pass portion of the interferer were placed at the same ITD
and the remaining portions placed at a different ITD, listeners performed as
well as when both target portions were presented at a consistent ITD. When
both target and interferer are placed at the same ITD, performance was signif-
icantly reduced. This suggests that the auditory system exploits differences in
ITD independently within each frequency channel.

3 Neural Mechanisms

The precise mechanism by which the auditory system can exploit different group-
ing cues (the ‘neural code’) remains unclear. Taking the example of harmonicity,
theories of pitch perception can be considered to lie on a continuum with ‘place
code’ models and ‘temporal code’ models at the extremities. The place code
states that the pitch of a periodic sound corresponds to the position of maxi-
mum excitation in some tonotopically organised site in the brain. In contrast,
temporal models of pitch perception use the temporal fine structure of the au-
ditory nerve firings to determine the pitch.

A class of neural networks called timing nets have been suggested as a means
of explaining how the auditory system uses temporally-coded input to produce
meaningful outputs [11,12]. Such networks consist of coincidence detectors and
delay lines and can be considered to encapsulate a range of architectures which em-
ploy analyses of interspike intervals (e.g., auto-correlation and cross-correlation).
A specific form of timing nets called recurrent timing neural networks (RTNNs)
requires only one spike pattern as input and has been successfully used for peri-
odicity analysis [12]. It should be emphasised, however, that the stimuli used in
1 A vertical plane passing through the head such that all points on the plane are

equidistant from both ears.
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[12] consisted of synthetic, stationary F0s. In the study presented here, we extend
this work to operate on natural speech and extend the network architecture such
that interaural time delay is also represented within the same network. This novel
architecture allows concurrent speech to be separated on the basis of a joint F0-
location cue without need for across-channel grouping: all processing is strictly
within-channel.

4 Recurrent Timing Neural Networks

An RTNN consists of a bank of coincidence detectors, all operating on the same
stimulus; Fig. 1(b). Each node of the network has a recurrent input exhibiting a
slightly different delay; Fig. 1(a). The pattern circulating in the recurrent delay
loop re-emerges after τ milliseconds; this is then compared with the stimulus
arriving at the node; if a coincidence is detected, the amplitude of the delay
loop input is increased by a certain factor. Regardless of the detection of a
coincidence, an attenuated version of the incoming signal is fed into the delay
line: without this, there would be no circulating signal to produce coincidences.
Thus, stimulus periodicities equal to a node’s recurrent delay will be emphasised
by that node. Over time, repeating temporal patterns are enhanced relative to
the rest of the stimulus. Furthermore, multiple repeating patterns with different
periodicities can be detected and encoded by such networks. Cariani showed that
such a relatively simple network was able to successfully separate up to three
concurrent synthetic vowels [12].

In this study, we wish to represent both pitch information and ITD information
in the same feature space. To achieve this, we make two important alterations to
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Fig. 1. (a) Coincidence detector with recurrent delay loop. (b) A group of coincidence
detectors with recurrent delay loops of increasing length form a recurrent timing neu-
ral network (RTNN). Note that all nodes in the RTNN receive the same input. (c)
2D RTNN (bottom layer) with extra coincidence detector layer (top) allowing joint
estimation of F0 and ITD. Downward connections are only shown for the front and
back rows. Recurrent delay loops for the RTNN layer are omitted for clarity. xL(t) and
xR(t) represent signals from the left and right ears respectively. Solid nodes represent
activated coincidence detectors.
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the architecture shown in Fig. 1(b). In order to compute the ITD feature, a one-
dimensional row of coincidence detectors coupled by a delay line is introduced. In
our system, 41 nodes are used, each coupled by a delay of equal duration (1 sample
at 20 kHz or 50μs). The end nodes of this row each receive one of the individual
ear signals as shown in Fig. 1(c). Each signal propagates down the row; in essence,
this performs a cross-correlationanalysis equivalent to Jeffress’ neural coincidence
model of sound localisation [13]. Hence, the ITD of sounds to the right of the head
are represented by coincidences in the left-hand half of the delay line (since they
reach the right ear first and gain a headstart down the delay line travelling toward
the left-hand edge) and vice versa.

Functionally, the delay line has the effect of performing an initial stage of
source separation: activities due to spatially distinct sound sources will be emit-
ted by their corresponding delay line node. At any one time, all nodes in the
delay line will be emitting activity of some form (although only a small number
will be responding strongly to sources at their best-ITD). In order to perform
periodicity analysis on the output of each of these nodes, the one-dimensional
network architecture shown in Fig. 1(b) is replicated to create a two-dimensional
network in which each column performs periodicity analysis on the output of a
single ITD delay line node; see Fig. 1(c). The activity of the two-dimensional
layer, therefore, is a map with ITD on one axis and pitch on the other. Contin-
uing the example shown in Fig. 1(c), the two-dimensional network is showing
that the source nearest the right side of the head has a large pitch period, while
the source towards the left side of the head has a small pitch period.

The ability to represent both F0 and ITD on the same feature space, allows
the model to avoid a common problem in CASA: when multiple concurrent
sources are present, how is the correct ITD associated with the correct F0? The
two features are commonly computed in distinct feature spaces. In this model,
they are automatically associated. Furthermore, it is easier to separate multiple
sources in this feature space since it is unlikely that two sources will exhibit
the same pitch and location simultaneously, thus being represented in different
areas. Indeed, given a static separation of the sources, there is no need for explicit
tracking of F0 or location: we simply connect the closest activity regions over
time. A further advantage is that source separation can proceed within-channel
without reference to a dominant F0 or dominant ITD estimate as required in an
across-frequency grouping technique. Provided there is some separation in one
or both of the cues, two activity regions (in the case of two simultaneous talkers)
can be extracted and assigned to different sources.

5 The Model

5.1 Auditory Periphery

A bank of 20 gammatone filters [14] with overlapping passbands simulate the
frequency analysis performed by the basilar membrane. Their centre frequencies
range from 100Hz to 8 kHz and are equally spaced on the equivalent rectangular
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bandwidth (ERB) scale [15]. A gammatone filter of order n and centre frequency
f Hz is defined as:

gt(t) = tn−1 exp(−2πbt) cos(2πft + φ)H(t) (1)

where f is the centre frequency, φ is phase, b is related to bandwidth, and H(t)
is the unit step (Heaviside) function defined as H(t) = 1 if t ≥ 0, H(t) = 0
otherwise. Here, we use fourth-order gammatone filters. Since later stages of
the model only require periodicity information, the auditory nerve response is
approximated by half-wave rectifying and cube root compressing the output of
each filter.

5.2 RTNN

The RTNN layer consists of a grid of independent (i.e., unconnected) coincidence
detectors with an input from the ITD estimation layer (described above) and a
recurrent delay loop. For a node with a recurrent delay loop duration of τ whose
input xθ(t) is received from the ITD node tuned to an interaural delay of θ, the
update rule is:

C(t) = αxθ(t) + βxθ(t)C(t − τ) . (2)

The output of the node (and, hence, also about to enter the recurrent delay loop)
is denoted by C(t); C(t−τ) is the response which is just emerging from the delay
loop. To ensure some form of signal is always circulating in the delay loop to
allow coincidences to occur, α acts as an attenuator for the incoming signal. Note
that α is sufficiently small so as not to dominate the node’s response (α = 0.2).
Should a coincidence occur, the weight β determines the rate of adjustment and
is dependent on τ such that coincidences at low pitches are de-emphasized [12].
Here, β increases linearly from 3 at the smallest recurrent delay loop length to
10 at the largest.

In order to perform the joint pitch-ITD analysis on each auditory nerve centre
frequency, the model employs 20 independent networks (of the form shown in
Fig. 1(c)), one for each frequency channel. Network activity is captured using
a sliding temporal window in which activity over the duration of the window
is averaged. In our model, we use a window size of 25ms and a temporal shift
of 5 ms. Therefore, for every frequency channel, a sequence of two-dimensional
activity plots is built up over time.

Ultimately, the system should allow concurrent speakers to be separated and
be transcribed by an automatic speech recognition system. Thus, it is necessary
to know, at any time-frequency point during the signal, whether that point is
dominated by the target speech or by some form of interference. The network
activity plots (one generated every 5ms per frequency channel) can be used
to make an estimate of talker activity at a particular time-frequency point: a
highly active node relative to the rest of the network indicates that the source at
that F0-ITD combination is active. Specifically, a time-frequency binary mask
for the target talker is created from the RTNN output. A time-frequency mask
unit is set to 1 if the target talker’s activity was greater than the target’s mean
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activity for that frequency channel, otherwise it is set to 0. Talker activity can
be grouped across time frames by associating the closest active nodes in F0-ITD
space (assuming the two talkers don’t momentarily have the same ITD and F0).

6 Evaluation

The separation technique described above was evaluated on a number of speech
mixtures drawn from the TIdigits Studio Quality Speaker-Independent
Connected-Digit Corpus [16]. The sampling rate for the corpus is 20 kHz.

In order to investigate the influence of spatial separation on the ability of
the system to successfully segregate concurrent speakers, three different tar-
get+interferer spatialisations were used: -40◦+40◦, -20◦+20◦ and -10◦+10◦. For
each scenario, 100 randomly selected utterance pairs were created, all of which
were from male talkers. To avoid duration mismatches due to differing speaking
rates across subjects, the target utterance consisted of five digits and the inter-
ferer utterance consisted of seven digits. Furthermore, the target was always on
the left of the azimuth midline. The signals were spatialised by convolving them
with head related transfer functions (HRTFs) measured from a KEMAR artifi-
cial head in an anechoic environment [17]. The two speech signals where then
combined with a signal-to-noise ratio (SNR) of 0 dB. The SNR was calculated
using the original, monaural, signals prior to spatialisation.

Three forms of evaluation were employed: assessment of the amount of target
energy lost (PEL) and interferer energy remaining (PNR) in the mask [18, p.
1146]; target speaker SNR improvement; ASR performance improvement.

All three techniques require the use of an a priori binary mask (an ‘optimal’
mask). The a priori binary mask is formed by placing a 1 in any time-frequency
units where the energy in the mixed signal is within 1 dB of the energy in the
clean target speech (the regions which are dominated by target speech), other-
wise they are set to 0. In other words, an a priori binary mask uses information
about regions of uncorrupted speech within the mixture.

6.1 Signal Energy

In order to assess the quality of segregation based upon an energy metric, it is
necessary to obtain a number of time-domain signals. These signals are derived
from a resynthesis process which uses a binary mask to determine which time-
frequency portions are required and which are to be discarded. The gammatone
filter outputs for each frequency channel are divided into frames of size equal to
the binary mask resolution. Each signal frame is then weighted by the value of
the binary mask at that time-frequency point. Individual channels are recovered
using the overlap-and-add method and these are summed across frequencies to
yield a resynthesized signal. The percentage of target speech excluded from the
segregated speech (PEL), and the percentage of interferer included (PNR) are
defined to be [18, p. 1146]:

PEL =
∑

n e2
1(n)∑

n I2(n)
, (3)
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PNR =
∑

n e2
2(n)∑

n O2(n)
. (4)

The clean target signal which has been resynthesized using the a priori binary
mask is denoted by I(n). O(n) is the clean target signal which has been resyn-
thesized using the RTNN produced mask (the actual separated signal produced
by our system). e1(n) is the clean target signal which has been resynthesized
using a mask in which 1s are present at all time-frequency points which are 1
in the a priori binary mask and 0 in the RTNN produced mask (the portions of
the signal which ought to be present but are missing in the system’s separated
signal). e2(n) is the opposite of this; in other words, e2(n) is the clean target
signal which has been resynthesized using a mask in which 1s are present at all
time-frequency points which are 1 in the RTNN produced mask and 0 in the
a priori binary mask (the portions of the signal which are present but should
not be: remaining interferer).

In addition to resynthesizing the target O(n), the interferer signal is also
resynthesized using the RTNN generated target mask. This allows the calculation
of SNR (an easily understood metric) before and after processing.

6.2 Automatic Speech Recognition

The third evaluation technique involves using an ASR system which can ex-
ploit the ‘missing data’ technique [3]. The task of ASR can be defined as the
assignment of an acoustic observation x to a class of speech sound C. However,
some components of x may be unreliable or missing due to an interfering sound
source. In this situation, the likelihood of the acoustic model f(x|C) cannot be
established in the usual manner. To overcome this problem, the missing data
approach partitions x into reliable and unreliable components, xr and xu. The
reliable components xr (whose values are known) are directly available to the
classifier whereas the unreliable components xu are uncertain.

More specifically, the marginal distribution f(xr|C) is used directly and the
likelihood f(xu|C) is estimated by integrating over bounds (i.e., between zero
and the observed energy) [3].

The missing data approach requires a process which identifies the reliable
and unreliable components, xr and xu. Here, we use the RTNN time-frequency
binary mask to indicate whether the acoustic evidence in each time-frequency
region is reliable; units assigned 1 in the binary mask define the reliable areas of
target speech whereas units assigned 0 represent unreliable regions.

The features used by the recogniser in this study are known as auditory rate
maps. They are computed by calculating the instantaneous Hilbert envelope
of each gammatone filter response [19]. This is smoothed by a low-pass filter
with an 8ms time constant, sampled at 5 ms intervals (to match the RTNN
binary mask resolution), and cube root compressed to give a pseudo-spectrogram
representation of auditory firing rate (Fig. 2).

Auditory rate maps were obtained for the training section of the corpus, and
were used to train 12 word-level HMMs (a silence model, ‘oh’, ‘zero’ and ‘1’ to ‘9’)
each consisting of 18 no-skip, straight-through states with observations modelled
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Fig. 2. The upper left panel shows the ratemap for the target utterance (‘587o9’) and
the interfering utterance (‘736883o’) ratemap is shown below it. Darker areas indicate
higher energy; the interfering ratemap has been truncated to match the duration of
the target. The upper right panel shows the ratemap of the two utterances which
have been spatialised to -40◦ (target) and 40◦ (interferer) and mixed at a monaural
SNR of 0 dB. The bottom right panel shows the RTNN missing data mask for the
target utterance—black pixels denote time-frequency regions dominated by the target
utterance.

by a 12 component diagonal Gaussian mixture. Training was performed using
HTK [20] and testing used Barker’s Computational Auditory Scene Analysis
Toolkit (CTK)2.

6.3 Results

The results from our model are shown in Table 1; each value represents the
average performance of 100 target and interferer utterance pairs for the three
different spatial separations. In addition, the average performance across all spa-
tial separations is included. The data in the table is split into three main classes:
PEL and PNR, SNR improvement and ASR improvement. For comparison, a pri-
ori performance is also shown for SNR and ASR approaches. These values are
calculated for the left ear (the ear closest to the target). Although the speech
signals were mixed at 0 dB relative to the monaural signals, the actual SNR at
the left ear for the spatialised signals will depend on the spatial separation of
the two talkers (hence its inclusion in the table).

On average, the RTNN system removes over 91% of the interfering utterance
with this figure rising to 94% at the most favourable separation. In addition to
this, the amount of energy incorrectly removed from the target PEL is approxi-
mately 11%. The SNR metric shows a significant improvement at all interferer
positions; on average, our model exhibits an improvement factor of 3.7 when
compared to the SNR before separation. Furthermore, it can be observed that
2 Available from http://www.dcs.shef.ac.uk/∼jon/ctk.html
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Table 1. Separation performance for concurrent speech at different interferer azimuth
positions in degrees; ‘pre’ denotes performance before processing; ‘RTNN’ denotes per-
formance after processing and ‘a priori’ denotes ‘optimal’ performance. ASR accuracy
is (100% - word error rate).

±10◦ ±20◦ ±40◦ AVERAGE

SNR (dB) pre 1.64 3.13 5.19 3.32
SNR (dB) RTNN 10.03 11.55 14.49 12.02
SNR (dB) a priori 12.35 13.27 15.01 13.54

Mean PEL (%) 10.62 12.74 10.22 11.19
Mean PNR (%) 9.99 8.42 6.02 8.14

ASR Acc. (%) pre 15.00 22.20 28.20 21.80
ASR Acc. (%) RTNN 71.60 74.60 83.40 76.53
ASR Acc. (%) a priori 93.40 94.00 94.60 94.00

SNR performance approaches the a priori values at wider separations. Such SNR
performance is supported by the low values for PNR which indicate good levels
of interferer rejection and relatively little target loss.

Importantly, the missing data ASR paradigm is tolerant to this relatively low
level of target energy loss as indicated by the ASR accuracy performance. Indeed,
the missing data ASR performance remains relatively robust when compared to
the baseline system which used a unity mask (all time-frequency units assigned
1). We note that ASR performance also approaches the a priori values at wider
angular separations. Furthermore, we predict that an increased sampling rate
would produce improvements in performance for both SNR and ASR at smaller
separations due to the higher resolution of the ITD sensitive layer (see below).

7 Conclusions

A number of grouping cues play important roles in the auditory system’s ability
to segregate competing sounds. Two of these cues are harmonicity and location.
The neural coding strategy by which such cues are represented is the subject of
continued debate. A type of neural network called recurrent timing neural net-
works has been proposed as a means of explaining how the auditory system uses
temporally-coded input to produce meaningful outputs [11,12]. Such networks
have been used successfully in previous studies to separate multiple concurrent
synthetic vowels using periodicity information.

In this study we extended such one-dimensional networks to allow the ar-
chitecture to represent sounds in a joint F0-ITD cue space. The system was
evaluated using a much more challenging paradigm than the synthetic static
vowels used in previous RTNN studies [11,12]. Here, the scenarios consist of
concurrent real speech mixed at an SNR of 0 dB. Unlike stationary vowels, each
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constituent signal contains fluctuating F0s and sections of unvoiced speech are
common.

The results shown in Table 1 indicate high levels of interferer rejection with
low levels of incorrectly removed target speech. The system retained an average
of 88.81% of target speech energy and removed over 91% of the interferer. SNR
values for the separated target speech also indicate good separation, and informal
listening tests found that target speech extracted by the system was of good
quality. SNR performance reported here (10.03dB at the smallest separation)
also compares well with those of [9], although direct comparison is difficult due to
differing stimuli and spatial separations. The energy-based mechanism allowing
unvoiced segments to be represented in the RTNN binary mask successfully
included the utterances’ fricatives. We note that the target signals commonly
used in such evaluations tend to be voiced throughout (e.g., [18]), thus avoiding
the problem of unvoiced energy.

The relatively wide spatial separations employed here were by necessity of the
sampling rate of the speech corpus: at 20 kHz an ITD of one sample is equivalent
to an angular separation of approximately 5.4◦. Thus, the smallest separation
used here corresponds to an ITD of just 3.7 samples. A means of addressing
this issue is to upsample the corpus to a higher sampling rate of, for example,
48 kHz. However, this has the effect of significantly increasing the size of the
RTNN and thus the computational load—a topic of future work. We will also
test the system on a larger range of SNRs and larger set of interferer positions.

Furthermore, an assumption made by the system is that the target is always
on the left side of the head. At each frequency, the activity of a source is rep-
resented in F0-ITD space. Over the duration of the signal, the position of this
source will fluctuate with pitch and location, hence, creating a trace through
the 3-dimensional space of F0, ITD and time. This presents a permutation am-
biguity problem similar to that encountered in frequency-domain blind source
separation approaches [21], which could be solved by combining channels that
have a similar temporal structure. Alternatively, an attentional process could
be employed which would select one of the sources to be the target based upon
some a priori knowledge of the target and track it across time (e.g., [22]).

Acknowledgments. This work was partly supported by the European Union
6th FWP IST Integrated Project AMI (Augmented Multi-party Interaction,
FP6-506811).
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Abstract. The PASCAL Speech Separation Challenge (SSC) is based
on a corpus of sentences from the Wall Street Journal task read by two
speakers simultaneously and captured with two circular eight-channel
microphone arrays. This work describes our system for the recognition
of such simultaneous speech. Our system has four principal components:
A person tracker returns the locations of both active speakers, as well
as segmentation information for each utterance, which are often of un-
equal length; two beamformers in generalized sidelobe canceller (GSC)
configuration separate the simultaneous speech by setting their active
weight vectors according to a minimum mutual information (MMI) cri-
terion; a postfilter and binary mask operating on the outputs of the
beamformers further enhance the separated speech; and finally an auto-
matic speech recognition (ASR) engine based on a weighted finite-state
transducer (WFST) returns the most likely word hypotheses for the sep-
arated streams. In addition to optimizing each of these components, we
investigated the effect of the filter bank design used to perform subband
analysis and synthesis during beamforming. On the SSC development
data, our system achieved a word error rate of 39.6%.

1 Introduction

The PASCAL Speech Separation Challenge (SSC) is based on a corpus of sen-
tences from the Wall Street Journal (WSJ) task read by two speakers simulta-
neously and captured with two circular eight-channel microphone arrays. This
work describes our system for the automatic recognition of such simultaneous
speech. Our system has four principal componenents: A person tracker returns
the locations of both active speakers, as well as segmentation information for
each utterance, which are often of unequal length; two beamformers in gener-
alized sidelobe canceller (GSC) configuration separate the simultaneous speech
by setting their active weight vectors according to a minimum mutual informa-
tion (MMI) criterion; a postfilter and binary mask operating on the outputs
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of the beamformers further enhance the separated speech; and finally an auto-
matic speech recognition (ASR) engine based on a weighted finite-state transducer
(WFST) returns the most likely word hypotheses for the separated streams.

Our speaker tracking system was previously described in [1]. It is based on
a joint probabilistic data association filter (JPDAF). The JPDAF is capable of
tracking multiple targets simultaneously and consists of multiple Kalman filters,
once for each target to be tracked [2, §6.4]. When new observations become avail-
able, they are associated either with an active target or with the clutter model,
which models spurious acoustic events, through the calculation of posterior prob-
abilities. After the association step, the position of each target can be updated
independently through suitably modified Kalman filter update formulae.

In acoustic beamforming, it is typically assumed that the position of the
speaker is estimated by a speaker localization system. A conventional beam-
former in GSC configuration is structured such that the direct signal from the
speaker is undistorted [3, §6.7.3]. Subject to this distortionless constraint, the
total output power of the beamformer is minimized through the appropriate
adjustment of an active weight vector, which effectively places a null on any
source of interference, but can also lead to an undesirable signal cancellation. To
avoid the latter, the adaptation of the active weight vectors is typically halted
whenever the desired source is active.

For the speech separation task, we implemented two beamformers in GSC
configuration, where one GSC was directed at each source. We then jointly ad-
justed the active weight vectors of the GSCs so as to provide output streams with
minimum mutual information. Better speech separation was achieved through
the use of non-Gaussian pdfs for calculating mutual information. In our initial
experiments on the SSC development data, a simple delay-and-sum beamformer
achieved a word error rate (WER) of 70.4%. The MMI beamformer under a
Gaussian assumption achieved 55.2% WER which was further reduced to 52.0%
with a K0 pdf, whereas the WER for data recorded with close-talking micro-
phone was 21.6%.

We also used novel techniques to represent a full WSJ trigram language model
with 1,639,687 bigrams and 2,684,151 trigrams as a statically-expanded WFST
for decoding the separated streams. The final decoding graph constructed from
this trigram contained nearly 50 million states and over 100 million transitions.
We were able to construct such a large decoding graph by introducing an ad-
ditional symbol into the language model to explicitly model transitions to the
back-off node and thereby make the language model transducer sequential. Be-
cause the components to be composed together to create the final decoding graph
were likewise sequential, we were able to forego the last determinization step,
which is usually the most demanding operation in terms of computation and
main memory requirements. The use of the full trigram provided a reduction in
WER from 52.5% to 47.7%.

In a final set of experiments, we used four different filter bank designs to
perform subband analysis and synthesis. We also tested different postfiltering
configurations, and applied binary masking to the postfiltered streams. Our best
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current result on the SSC development data is 39.6% WER. Our best result on
the SSC 2007 evaluation set was 46.9% WER.

The balance of this work is organized as follows. In Section 2, we review the
definition of mutual information, and demonstrate that, under a Gaussian as-
sumption, the mutual information of two complex random variables is a simple
function of their cross-correlation coefficient. We then discuss our MMI beam-
forming criterion and present the framework needed to apply minimum mutual
information beamforming when the Gaussian assumption is relaxed. In Section 3
we describe sequence of operations used to optmize the search space for au-
tomatic recognition on the separated streams of speech. We also present the
sizes of the language models and decoding graphs used for our experiments. In
Section 4, we present the results of far-field automatic speech recognition ex-
periments conducted on data from the PASCAL Speech Separation Challenge.
Finally, in Section 5, we present our conclusions and plans for future work.

2 Beamforming

Consider two r.v.s Y1 and Y2. By definition, the mutual information [4] between
Y1 and Y2 can be expressed as

I(Y1, Y2) = E
{

log
p(Y1, Y2)

p(Y1)p(Y2)

}
(1)

where E{} indicates the ensemble expectation.
The univariate Gaussian pdf for complex r.v.s Yi can be expressed as

p(Yi) =
1

πσ2
i

exp
(−|Yi|2/σ2

i

)
(2)

where σ2
i = E{YiY

∗
i } is the variance of Yi. Let us define the zero-mean complex

random vector Y =
[
Y1 Y2

]T and the covariance matrix.

ΣY = E{YYH} =
[

σ2
1 σ1σ2ρ12

σ1σ2ρ12 σ2
2

]
(3)

where ρ12 = ε12/σ1σ2 and ε12 = E{Y1 Y ∗
2 }. The bivariate Gaussian pdf for

complex r.v.s is given by

p(Y1, Y2) =
1

π2|ΣY | exp
(
−YT Σ−1

Y Y
)

(4)

It follows that the mutual information (1) for jointly Gaussian complex r.v.s can
be expressed as [5]

I(Y1, Y2) = − log
(
1 − |ρ12|2

)
(5)

From (5), it is clear that minimizing the mutual information between two zero-
mean Gaussian r.v.s is equivalent to minimizing the magnitude of their cross
correlation coefficient ρ12, and that I(Y1, Y2) = 0 if and only if |ρ12| = 0.
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Fig. 1. A beamformer in GSC configuration

Consider two subband beamformers in GSC configuration as shown in
Figure 1. The output of the i-th beamformer for a given

subband can be expressed as,

Yi = (wq,i − Biwa,i)
H X (6)

where wq,i is the quiescent weight vector for the i-th source, Bi is the blocking
matrix, wa,i is the active weight vector, and X is the input subband snapshot
vector. In keeping with the GSC formalism, wq,i is chosen to preserve a signal
from the look direction [3, §6.3]. The blocking matrix Bi is chosen such that
BH

i wq,i = 0. The active weight vector wa,i is typically chosen to maximize the
signal-to-noise ratio (SNR). Here, however, we develop an optimization proce-
dure to find that wa,i which minimizes the mutual information I(Y1, Y2) where
Y1 and Y2 are the outputs of the two beamformers. Minimizing a mutual informa-
tion criterion yields a weight vector wa,i capable of canceling interference that
leaks through the sidelobes without the signal cancellation problems encoun-
tered in conventional beamforming. The details of the estimation of the optimal
active weights wa,i under the MMI criterion (5) as well as the application of a
regularization term are described in Kumatani et al [6].

Beamforming in the subband domain has the considerable advantage that the
active sensor weights can be optimized for each subband independently, which
provides a tremendous computational savings. The subband analysis and resyn-
thesis can be performed with a perfect reconstruction (PR) filter bank such
as the popular cosine modulated filter bank [7, §8]. As this PR filter bank is
based on assumptions that are not satisfied in beamforming and adptive filter-
ing applications, however, there are other designs that are better suited for such
applications. In Section 4 we present the results of ASR experiments comparing
the effectiveness of frequency domain beamforming with subband beamforming
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Fig. 2. Plot of the log-likelihood of the super-Gaussian and Gaussian pdfs

based on the PR design, the design proposed by De Haan et al [8], and a further
novel design technique. We also compare the performance of subband beamform-
ers based on the filter designs with frequency domain beamforming based on a
simple FFT.

A plot of the log-likelihood of the Gaussian and three super-Gaussian real
univariate pdfs considered here is provided in Figure 2.

From the figure, it is clear that the Laplace, K0 and Γ densities exhibit the
“spikey” and “heavy-tailed” characteristics that are typical of super-Gaussian
pdfs. This implies that they have a sharp concentration of probability mass at
the mean, relatively little probability mass as compared with the Gaussian at
intermediate values of the argument, and a relatively large amount of probability
mass in the tail; i.e., far from the mean. As explained in [6], univariate and
bivariate forms of the complex Laplace, K0 and Γ pdfs can be derived using the
theory of Meijer G-functions [9].

3 Search Space Optimization

As originally proposed by Mohri et al [10,11], a weighted finite-state transducer
(WFST) that translates phone sequences into word sequences can be obtained by
forming the composition L◦G, where L is a lexicon which translates the phonetic
transcription of a word to the word itself, and G is a grammar or language model
which assigns to valid sequences of words a weight consisting of the negative log
probability of this sequence. In the original formulation of Mohri and Riley [12],
phonetic context is modeled by the series of compositions H ◦ C ◦ L ◦ G, where
H is a transducer converting sequences of Gaussian mixture models (GMMs) to
sequences of polyphones, and C is a transducer that converts these polyphone
sequences to corresponding sequences of phones.
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In [13], we showed how the necessity of explicitly modeling C could be circum-
vented by constructing a transducer HC that maps directly from sequences of
GMM names to sequences of phones. In more recent work [14], we demonstrated
that HC can be incrementally expanded and immediately determinized. Such
an incremental procedure enables a much larger decision tree to be modeled as
a WFST. In our previous work, we constructed a recognition network based on

min push det(min detHC ◦ det(L ◦ G)) (7)

where det, push, and min represent the WFST equivalence transformations,
determinization [15], weight pushing [16], and minimization [17]. The sequence
represented by (7) is the “standard” build procedure [11]. By far, the most
memory and time intensive portion of this build sequence is the determinization
after HC has been statically composed with L◦G. Hence, we sought to construct
a larger recognition network by eliminating this costly determinization.

In the context of WFSTs, ε–symbols represent that null symbol that consumes
no input or produces no ouput. A sequential transducer is deterministic on the
input side and has no ε–symbols as input. A well-known theorem from Mohri [15]
states that the composition of two sequential transducers is sequential. As typ-
ically constructed, the grammar G is not sequential, as ε–symbols are used to
allow transitions to nodes modeling back-off probabilities, which in turn implies
L ◦ G is not sequential. We remedied this problem by replacing the ε–symbols
in G with an explicit back-off symbol %, much the way word end markers are
introduced to disambiguate homophones [11] thereby allowing L ◦ G to be de-
terminized. Similarly, a back-off self-loop was added to the end of each word
in L, and to the end of each three-state sequence in HC. These changes were
sufficient to make L ◦G sequential. As HC was already sequential, we were able
to entirely forego the determinization after composing HC and L ◦ G. Adding
the back-off symbols had an additional salutary effect in that L ◦ G, and hence
the final recognition network, became much smaller, which provided for the use
of a still larger language model G.

The sizes of the shrunken and full bigram trigram language models along
with the decoding graphs built from them and used for the speech recognition
experiments reported in Section 4 are given in Table 1. We performed our ini-
tial experiments with the a decoding graph built based on (7) without explicit
back-off symbols. Thereafter, we built decoding graphs with the full bigram,
then with shrunken and full trigrams using the new build technique with ex-
plicit back-off symbols in the LM. It is worth noting that the decoding graph
built from the full bigram with the back-off symbols actually has fewer nodes
and transitions than the decoding graph built from the shrunken bigram with-
out back-off symbols. Moreover, as we were able to eliminate the costly deter-
minization after composing HC and L ◦G, we were able build a decoding graph
from the full WSJ trigram with nearly 50 million states and over 100 million
transitions.
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Table 1. Dimensions of the various language models and the decoding graphs built
from them

Language G HC ◦ L ◦ G
Model Bigrams Trigrams Nodes Arcs

Shrunken Bigram 323,703 0 4,974,987 16,672,798
Full Bigram 835,688 0 4,366,485 10,639,728

Shrunken Trigram 431,131 435,420 14,187,005 32,533,593
Full Trigram 1,639,687 2,684,151 49,082,515 114,304,406

4 Experiments

We performed far-field automatic speech recognition experiments on develop-
ment data from the PASCAL Speech Separation Challenge (SSC) [18]. The data
contain recordings of five pairs of speakers and each pair of speakers reads ap-
proximately 30 sentences taken from the 5,000 word vocabulary Wall Street
Journal (WSJ) task. The data were recorded with two circular, eight-channel
microphone arrays. The diameter of each array was 20 cm, and the sampling rate
of the recordings was 16 kHz. The database also contains speech recorded with
close talking microphones (CTM). This is a challenging task for source separa-
tion algorithms given that the room is reverberant and some recordings include
significant amounts of background noise. In addition, as the recorded data is
real and not artificially convoluted with measured room impulse responses, the
position of the speaker’s head as well as the speaking volume varies.

After beamforming, the feature extraction of our ASR system was based on
cepstral features estimated with a warped minimum variance distortionless re-
sponse [19] (MVDR) spectral envelope of model order 30. We concatenated 15
cepstral features, each of length 20, then applied linear discriminant analysis
(LDA) [20, §10] and a semi-tied covariance (STC) [21] transform to obtain final
features of length 42 for speech recognition.

4.1 Beamforming Experiments

The training data used for our initial beamforming experiments were taken from
the ICSI, NIST, and CMU meeting corpora, as well as the Transenglish Database
(TED) corpus, for a total of 100 hours of training material. In addition to these
corpora, approximately 12 hours of speech from the WSJCAM0 corpus [22] was
used for HMM training in order to cover the British accents for the speak-
ers [18]. Acoustic models estimated with two different HMM training schemes
were used for the several decoding passes: conventional maximum likelihood
(ML) HMM training [23, §12] and speaker-adapted training under a ML criterion
(ML-SAT) [24]. Our baseline system was fully continuous with 3,500 codebooks
and a total of 180,656 Gaussian components.

We performed four passes of decoding on the waveforms obtained with each of
the beamforming algorithms. Parameters for speaker adaptation were estimated
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Table 2. Word error rates for every beamforming algorithm after every decoding passes

Beamforming Pass (%WER)
Algorithm 1 2 3 4

Delay & Sum 85.1 77.6 72.5 70.4
MMI: Gaussian 79.7 65.6 57.9 55.2
MMI: Laplace 81.1 67.9 59.3 53.8

MMI: K0 78.0 62.6 54.1 52.0
MMI: Γ 80.3 63.0 56.2 53.8
CTM 37.1 24.8 23.0 21.6

using the word lattices generated during the prior pass [25]. A description of the
individual decoding passes follows:

1. Decode with the unadapted, conventional acoustic model and bigram lan-
guage model (LM).

2. Estimate vocal tract length normalization (VTLN) [26] parameters and con-
strained maximum likelihood linear regression parameters (CMLLR) [27] for
each speaker, then redecode with the conventional acoustic model and bigram
LM.

3. Estimate VTLN, CMLLR, and maximum likelihood linear regression
(MLLR) [28] parameters for each speaker, then redecode with the conven-
tional model and bigram LM.

4. Estimate VTLN, CMLLR, MLLR parameters, then redecode with the ML-
SAT model and bigram LM.

Table 2 shows the word error rate (WER) for every beamforming algorithm
and speech recorded with the CTM after every decoding pass on the SSC devel-
opment data. These results were obtained with subband-domain beamforming
where subband analysis and synthesis was performed with the perfect recon-
struction cosine modulated filter bank described in [7, §8]. After the fourth pass,
the delay-and-sum beamformer has the worst recognition performance of 70.4%
WER. The MMI beamformer with a Gaussian achieved a WER of 55.2%. The
best performance of 52.0% WER was achieved with the MMI beamformer by
assuming the subband samples are distributed according to the K0 pdf.

4.2 Language Modeling Experiments

To test the effect of language modeling improvements, we trained a triphone
acoustic model on 30 hours of American WSJ data, and the 12 hours of Cam-
bridge WSJ data. For the language modeling experiments, we used the same
acoustic features and same sequence of decoding passes as in the prior sec-
tion. The word error rate reduction achieved through larger language models
are shown in Table 3. The most dramatic reduction in WER was achieved by
replacing the bigram LMs with the shrunken trigram. As shown in Table 1, the
shrunken trigram produced a decoding graph that was still small enough to run
on our standard 32-bit workstations. The full trigram, on the other hand, could
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Table 3. ASR results on the SSC development data

Pass (%WER)
Language Model/Pass 1 2 3 4

shrunken bigram 85.7 64.8 53.8 52.5
full bigram 65.5 53.8 52.4

shrunken trigram 86.1 61.7 49.8 47.7
full trigram 88.3 61.0 48.9 47.0

not be used on the 32-bit machines used for the experiments reported here. On
a work station with a 64-bit operating system, more than 7 Gb of RAM were
required merely to load the decoding graph built from the full trigram, and the
entire task image of the recognition job was approximately 8 Gb. Moreover, the
reduction in WER with respect to the shrunken trigram that was achieved by
the full trigram was less than one percent absolute. Hence, we used the decoding
graph built from the shrunken trigram to decode the evaluation data, as that
system was much more tractable.

The results of further experiments with these language models, as well as a
description of a technique for dynamically composing the HC and L ◦ G com-
ponents, and thereby radically reducing the enormous amount of random access
memory required by the full trigram, are given in [29].

4.3 Filter Bank Experiments

As explained in Section 2, our MMI beamformer operates in the frequency or
subband domain. Hence, the digital filter bank used for subband analysis and
resynthesis is an important component of the speech separation system. We
investigated four different filter bank designs, including:

1. The cosine modulated filter bank described by Vaidyanathan [7, §8], which
yields perfect reconstruction (PR) under optimal conditions. In such a filter
bank, PR is achieved through aliasing cancellation, wherein the aliasing that
is perforce present in one subband is cancelled by the aliasing in all others.
Aliasing cancellation breaks down if arbitrary complex factors are applied to
the subband samples. For this reason, such a PR filter bank is not optimal
for beamforming or adaptive filtering applications.

2. An DFT filter bank based on overlap-add.
3. The modulated filter bank proposed by De Haan et al [8], wherein separate

analysis and synthesis prototypes are designed to minimize an error criterion
consisting of a weighted combination of the total spectral response error and
the aliasing distortion. This design is dependent on the use of oversampling
to reduce aliasing error.

4. A novel cosine modulated design which differs from the De Haan filter bank
in that a Nyquist(M) constraint [7, §4] is imposed on the prototype in order
to ensure that the total response error vanishes. Thereafter the remaining
components of the prototype are chosen to minimize aliasing error, as with
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Table 4. ASR results on the SSC development data

Pass (%WER)
Filter Bank 1 2 3 4

PR 87.7 65.2 54.0 50.7
PR + postfilter + binary mask 87.1 66.6 55.7 52.5

FFT 88.5 71.1 58.8 55.5
De Haan 88.7 68.2 56.1 53.3

De Haan + postfilter + binary mask 82.7 57.7 42.7 39.6
Nyquist(M) + postfilter + binary mask 84.8 58.0 43.4 40.9

the De Haan design. The Nyquist(M) design similarly uses oversampling to
reduce aliasing distortion.

The word error rates (WERs) obtained with the four filter banks on the SSC
development data are shown in Table 4. For these experiments, the Gaussian pdf
was used exclusively. We also investigated the effect of applying a Zelinski post
filter [30] to the output of the beamformer in the subband domain, as well as the
binary mask 1 described in [31]. The results indicate that the performnace of PR
filter bank is actually quite competitive if no postfiltering nor binary masking
is applied to the output of the beamformer. For the PR design, performance
degrades from 50.7% WER to 52.5% when such postfiltering and masking is
applied, which is not surprising given that both will tend to destroy the aliasing
cancellation on which this design is based. When postfiltering and masking is
applied to either the De Haan or the Nyquist(M) designs, performance is greatly
enhanced. With the De Haan design adding postfiltering and masking reduced
WER from 53.5% to 39.6%. With postfiltering and masking the Nyquist(M)
design achieved very similar performance of 40.9%. For both the De Haan and
Nyquist(M) designs, an oversampling factor of eight was used. The simple FFT
achieved significantly worse performance than all of the subband filter banks.

5 Conclusions and Future Work

In this work, we have described our system for the automatic recognition of
simultaneous speech. Our system consisted of three principal components: A
person tracker returns the locations of both active speakers, as well as segmen-
tation information for each utterance, which are often of unequal length; two
beamformers in GSC configuration separate the simultaneous speech by setting
their active weight vectors according to a minimum mutual information (MMI)
criterion; a postfilter and binary mask operating on the outputs of the beam-
formers further enhance the separated speech; and finally an ASR engine based
1 We learned of the binary masking technique only by attending MLMI and listening

to Iain McCowan’s presentation about the SSC system developed by him and his
collaborators. Our experiments with the binary mask were conducted after the SSC
deadline.
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on a WFST returns the most likely word hypotheses for the separated streams.
In addition to developing and optimizing each of these three components, we
have also proposed a novel filter bank design in this work that, when used for
subband beamforming, provided ASR performance comparable or superior to
any design that has previously appeared in the literature. Our final results on
the SSC development data were 39.6% WER. On the SSC evaluation data, our
system achieved a WER of 46.2%.

In future, we plan to continue our investigations into the use of super-Gaussians
pdfs for MMI beamforming. This will entail systematically searching the entire
class of multi-dimensional super-Gaussians pdfs that can be represented with the
aid of the Meijer-G function. We will also develop an online or LMS-style algo-
rithm for updating the active weight vectors of the GSCs during MMI beamform-
ing. Finally, we hope to investigate other optimization criteria such the negentropy
metric typically used in the field of independent component analysis [4].
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Abstract. In this paper, we present a microphone array beamform-
ing approach to blind speech separation. Unlike previous beamforming
approaches, our system does not require a-priori knowledge of the micro-
phone placement and speaker location, making the system directly com-
parable other blind source separation methods which require no prior
knowledge of recording conditions. Microphone location is automatically
estimated using an assumed noise field model, and speaker locations are
estimated using cross correlation based methods. The system is evalu-
ated on the data provided for the PASCAL Speech Separation Challenge
2 (SSC2), achieving a word error rate of 58% on the evaluation set.

Keywords: Speech Separation, Microphone Array, Speech Recognition.

1 Introduction

Recently there has been a large effort to produce automatic speech recognition
systems which can automatically transcribe multi-party conversations such as
those which occur during meetings [1, 2]. Overlapping speech segments, where
more than one individual is talking simultaneously, pose a serious problem for
such systems, increasing the absolute word error rate between 15-30% when using
close talking microphones for a large vocabulary task [3]. However most systems
are optimised for a single dominant speaker, with performance degrading signif-
icantly when competing speech is present. One of the reasons for this is that,
while a number of different algorithms exist for separating the speech of compet-
ing talkers, to date there has been no systematic comparison of the approaches
in terms of their effects on recognition performance. Algorithms are typically
evaluated in terms of signal to noise ratio on small datasets containing signals
in the presence of noise or other interfering signals, and these datasets are often
specific to the group conducting the research, making comparison of algorithms
difficult. The PASCAL SSC2 attempts to overcome this lack of comparable re-
sults by providing a unified framework in which speech separation algorithms
may be compared in terms of speech recognition word error rate (WER) on a
standardised task, with a baseline recogniser. The task consists of separating
the overlapping speech of two talkers simultaneously reading sentences from the
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Wall Street Journal database in an instrumented meeting room. The speakers
are recorded using headset and lapel microphones and two 8-element circular
microphone arrays placed on a table in the centre of the meeting room. A de-
velopment set consisting of 178 sentences and an evaluation set of 143 sentences
are provided along with a baseline Wall Street Journal recogniser capable of
recognising the separated speech.

There are two common approaches to the separation of overlapping speech:
blind source separation (BSS) and microphone array processing. Blind source
separation attempts to exploit the assumption of statistical independence be-
tween the overlapped signals in order to separate them, while microphone array
processing provides an enhanced version of the input speech based on the loca-
tion of the speakers. Microphone array processing techniques generally require a-
priori knowledge of the microphone and speaker locations, while BSS algorithms
typically do not. In order to emulate real world conditions in which microphone
and speaker locations are unknown, and to provide a fair comparison between
techniques, one of the rules of the challenge states that ‘knowledge of the room
layout and speaker and microphone placements may not be used unless it is
derived automatically by the algorithm’. We have developed a microphone array
beamforming technique which automatically generates the required speaker and
microphone location information which is therefore directly comparable to BSS
approaches.

Section 2 presents the separation algorithm and give a detailed description of
each of its sub-components. Section 3 then presents and discusses experimental
results for the accuracy of both the sub-components and the separation system
as a whole, and Section 4 gives conclusions and further work which may improve
the performance of the system.

2 System Description

The system consists of four sub-components as shown in Figure 1. Initially the
microphone locations are estimated using a procedure based on the assumption
that the noise field within the recording room is diffuse - this is a reasonable
assumption for many practical reverberant environments such as offices and cars.
An SRP-PHAT based localisation system is then used to estimate the location
of the speakers in the room. The microphone and speaker location information
is used in a standard superdirective beamformer to separate the speech of the

Array Calibration 

Sub-Array 2 

Merge   
Sub-Arrays 
Estimates 

Beamforming Post Filtering 

Step 2 

Source Localisation Sub-Array 1 

Step 3 Step 4 Step 1 

Source Localisation 

Fig. 1. System Diagram
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two speakers, and finally crosstalk between the speakers is canceled by means of
a masking post-filter applied to the beamformer output. The separated signals
are then recognised by the ASR system for evaluation.

2.1 Array Calibration

The microphone locations are estimated using the procedure described in [4].
The coherence between two signals at points i and j, as a function of frequency
f , is defined as

Γij(f) � φij(f)√
φii(f)φjj(f)

(1)

where φij is the cross-spectral density between the signals on microphones i and
j. For a diffuse noise field, the coherence function may be shown to be [5]:

Γ diffuse
ij = sinc

(
2πfdij

c

)
(2)

where sinc(x) ≡ sin(x)/x, and dij is the distance between the spatial locations
of microphones i and j.

The distance between each microphone pair, dij can be estimated by fitting
Equation 2 to the measured coherence from Equation 1:

εij(d) =
fs/2∑

f=0

∣∣∣∣R{Γij(f)} − sinc

(
2πfd

c

)∣∣∣∣
2

(3)

dij = argmin
d

εij(d) (4)

Given these inter-microphone distance estimates, multidimensional scaling
[6, 7] is then used to estimate the relative locations of the microphones.

Initial experiments on the SSC2 development data showed that the micro-
phone calibration system was unable to precisely estimate the microphone po-
sitions when calibrating both arrays simultaneously, however microphones from
the same array were successfully clustered near each other. This is due to the
larger distances separating the two arrays - approximately 1.5 meters, compared
to intra-array spacings of several centimetres. While the diffuse coherence model
still holds for larger distances, it is difficult to obtain precise curve fitting as the
width of the sinc main lobe approaches zero, leading to inaccurate estimates. To
overcome this, a two pass procedure was used :

1. Find initial position of all microphones using the calibration procedure.
2. Cluster microphones into K sub-arrays using K-Means clustering. K is ini-

tialised to 1 and incremented until no microphone within a cluster is more
than 5cm from any other microphone within that cluster.

3. Re-calibrate the positions of the microphones within each sub-array.
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4. Since the MDS algorithm estimates locations subject to arbitrary rotation
and scaling, each sub-array is aligned to the original estimates from step 1
to ensure a common basis for all microphones.

Evaluation of the microphone localisation procedure is given in Section 3.1

2.2 Source Localisation

The automatically derived microphone locations are then used in an SRP-PHAT
[8] (Steered Response Power with Phase Transform) source localisation system
to estimate the location of the speakers.

Steered response power (SRP) localisation relies on directing a standard beam-
former, such as delay-and-sum, to a number of points of interest and evaluating
the power of the output signal. A search is usually performed over the area in
which the source is expected to lie, and the source position taken as the location
at which the beamformer’s output power is maximised.

In SRP-PHAT localisation, the PHAT weighted Generalised Cross Correlation
for the signal at each pair of microphones i, j is calculated for each time frame.

Rij
GCC PHAT (τ) =

1
2π

∫ +∞

−∞

Xi(ω)X∗
j (ω)

|Xi(ω)X∗
j (ω)|e

jωτdω (5)

The PHAT weighting has been shown to emphasise the peak in the GCC
seen at the time lag corresponding to the true source location, and de-emphasise
those caused by reverberation and noise.

The SRP of a filter and sum beamformer directed at location S can be shown
to be equivalent to the sum of the GCC’s for all pairs of microphones within the
array :

P (S) =
N∑

i=1

N∑

j=1

Rij
GCC−PHAT (δ(S, i, j)) (6)

δ(S, i, j) is the time delay of arrival between microphones i and j for a source
located at position S

δ(S, i, j) =
|S − Li| − |S − Lj|

c
(7)

where Li and Lj are the locations of microphones i and j (in this case estimated
using the microphone localisation procedure) respectively and c is the speed of
sound.

In a single speaker scenario, a search is performed over a number of locations
S and the speaker’s location is taken as the value of S which maximises P (S).
Since the SSC2 recordings contain two speakers, the two highest peaks are taken
to be the locations of the two speakers. In order to make the localisation more ro-
bust, any frames in which the second peak is below 70% of the first is discarded,
since this typically implies that only a single speaker is active and that the second
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location is spurious. A minimum angular separation between estimates is also
enforced, in order to avoid having both location estimates come from the same
speaker.

2.3 Superdirective Beamforming

In this work, superdirective beamformers are used to provide spatial discrim-
ination between the two speakers. A set of superdirective channel filters are
calculated for each speaker, minimising the diffuse noise power received by the
sensors under the constraint of unity gain to the desired direction. The array
steering vector, which represents microphone and source spatial configurations,
is constructed from automatically derived positions. Assuming near-field condi-
tion, this vector is given by [9]:

d = [a0e
−jωτ0 , a1e

−jωτ1 , ..., aN−1e
−jωτn ]T ,

an =
dref

dn
, τn =

dn − dref

c
,

where dn and dref denote the Euclidian distance between the source and the mi-
crophone n, or the reference microphone, respectively. To increase the robustness
of superdirective beamforming in the presence of array perturbation, a weighted
identity matrix is usually added to the noise cross-spectral matrix to satisfy the
white noise gain constraint [10].

2.4 Cross-Talk Noise Cancelling Post-filter

In order to further eliminate the signal from competing speakers, a frequency
domain masking post-filter is applied to each beamformer output. The post-filter
is motivated by the assumption that, at each time frame, the energy spectrum
of the sum of two signals can be approximated by the maxima of the individual
spectra for each signal in each frequency bin. This is due to the fact that two
independent signals rarely contain high energy in the same frequency bin at the
same time, a property which has been exploited to develop a series of techniques
for speech separation using a single microphone [11].

If bs(f) is the frequency domain output of beamformer s, zs(f) is the post-
filtered output and hs(f) is the frequency response of the post-filter, then for S
beamformers directed at competing sources [12],

zs(f) = bs(f)hs(f) (8)

where

hs(f) =

{
1 if s = argmax

s′ |bs′ |, s′
= 1...S

0 otherwise
(9)

In the case of the SSC2 system with S = 2 the output of the beamformer is
set to zero in a given frequency bin if the output of the second beamformer is
greater in that bin.
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3 Experiments and Results

3.1 Array Calibration Performance

In order to evaluate the performance of the array calibration technique described
in Section 2.1, the inter-microphone distances are compared to the known ground
truth microphone locations. Table 1 shows the mean, standard deviation, mini-
mum and maximum errors of the inter-microphone distance estimates for each
of the two arrays.

Table 1. Mean, standard deviation, minimum and maximum inter-microphone dis-
tance error. All measurements are in centimeters.

sub-array δd σd min(δd) max(δd)

1 0.80 0.65 0.02 2.33
2 0.46 0.31 0.02 1.15

The MDS algorithm returns the microphone locations subject to arbitrary
rotation and translation. So that the location estimates may be evaluated, for
each sub-array an incremental search is performed to align the estimated loca-
tions to those of the ground truth array geometry. Figure 2 shows the actual and
estimated microphone positions after the search, and Table 2 gives the mean,
standard deviation, minimum and maximum position errors in the microphone
location estimates.
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Fig. 2. The actual (circles) and estimated (pluses) microphone positions for sub-array1
and sub-array2

The inter-microphone distance and position errors for sub-array 1 are about
approximately twice that of sub-array 2, however, the microphone positions es-
timates for both sub-arrays show good accuracy, with errors ranging from 0cm
to 2.18cm.
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Table 2. Results measuring accuracy of positions estimates in terms of the mean,
standard deviation, minimum and maximum distance error. All measurements are in
centimetres.

sub-array δd σd min(δd) max(δd)

1 0.69 0.75 0.01 2.18
2 0.42 0.28 0.00 0.82

3.2 Source Localisation Performance

To assess the performance of the source localisation system, the estimated source
positions were compared with ground truth source locations obtained from the
MC-WSJ-AV data collection documentation [13]. The documentation gives the
location of the speaker in terms of their seating position around the meeting room
table and from this, and measurements of the table size, the approximate location
of the speaker can be inferred. Tables 3 and 4 show the localisation errors in terms
of azimuth (degrees), elevation (degrees), and radius (meters) for both ground
truth microphone locations and those estimated using the procedure described
in Section 2.1. The results show that, for sub-array 1, the use of estimated
microphone positions has little effect on the ability to locate both speakers,
however for sub-array 2 there is a significant decrease in the number of files in
which locations for both speakers are found. This may likely be attributed to
the fact that sub-array 2 is typically further from the speakers than sub-array 1.

To improve the speaker localisation performance, location estimates from the
two arrays are calculated independently using the technique described in 2.2 and
then combined as follows - Since sub-array 1 provides better localisation perfor-
mance than sub-array 2, the location corresponding to the most dominant peak
in sub-array 1’s GCC-Phat is taken as the location of speaker 1. For the second
speaker, if estimate 2 from sub-array 1 is more than 22.5 degrees away from
estimate 1 in the azimuth, then it is retained as the second location estimate,
otherwise the location estimate from sub-array 2 with greatest angular azimuth
separation from estimate 1 of sub-array 1 is selected. This technique attempts
to avoid the problem of localising to the same source twice. Localisation error

Table 3. Accuracy of speaker localisation results on development set using actual
microphone positions, in terms of azimuth (degrees), elevation (degrees), and radius
(metres) error

sub-array found both speaker azimuth elevation radius
(total of 178) mean stdev mean stdev mean stdev

1 134 1 4.36 6.84 7.84 4.82 0.41 0.37
2 4.59 5.03 8.21 5.11 0.48 0.36

2 143 1 8.66 6.57 7.42 5.67 0.35 0.28
2 10.33 24.06 8.24 8.98 0.37 0.28
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Table 4. Accuracy of speaker localisation results on development set using estimated
microphone positions, in terms of azimuth (degrees), elevation (degrees), and radius
(metres) error

sub-array found both speaker azimuth elevation radius
(total of 178) mean stdev mean stdev mean stdev

1 133 1 3.53 2.60 4.83 3.95 0.41 0.34
2 5.43 12.04 9.30 9.13 0.77 0.43

2 115 1 8.16 7.53 8.15 6.37 0.32 0.31
2 9.80 7.24 6.72 7.11 0.36 0.32

Table 5. Accuracy of merged speaker localisation results on development set using
actual and estimated microphone positions, in terms of azimuth (degrees), elevation
(degrees), and radius (metres) error

geometry found both speaker azimuth elevation radius
(total of 178) mean stdev mean stdev mean stdev

True 153 1 4.36 6.84 7.84 4.82 0.41 0.37
2 4.78 5.09 7.82 5.05 0.43 0.35

Calibrated 148 1 3.53 2.60 4.83 3.95 0.41 0.34
2 6.73 12.06 9.63 8.92 0.71 0.48

for the combined estimates are shown in Table 5 for both estimates and ground
truth microphone locations. The results show that combining the estimates from
the two arrays leads to an improvement in the speaker detection rates in addition
to an improvement in the azimuth estimates for the located speakers.

3.3 Speech Recognition Experiments

Speech recognition experiments were conducted on the final post-filtered output
of the separation system using the recogniser supplied by the SSC2 challenge
organisers. The system is an HTK based HMM recogniser with accoustic models
trained on the WSJCAM0 database, a dictionary derived from that used in the
AMI LVCSR system [2] and the ARPA bigram and trigram language models
developed for the WSJ0 corpus. Because the acoustic models are trained on
data from close talking microphones, MLLR is used to adapt the models to the
output of the separation system. Due to the small amounts of data available for
adaptation, a leave one out cross-validation approach is used for adaptation. The
supplied recognition system also includes scoring scripts which automatically
assign the separated speech to the correct speaker. To do this, the scoring script
compares both sentences against transcripts for each of the read utterances, and
selects the one which gives the highest score. Tables 6 and 7 show the recogniser
word error rates for the development and evaluation sets for a number of different
conditions. Headset and lapel microphones were worn by the speakers during the
database recording and results from these microphones are given, in addition
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Table 6. WER on development data set of the proposed system

Both Best

Headset Microphone 11.7 5.2
Lapel Microphone 32.2 20.5
Single Distant Microphone 98.8 92.5

GT Beamformer 68.8 47.1
GT Postfiler 57.0 36.2

Beamformer 66.3 43.4
Post-filter 54.8 35.1

Table 7. WER on evaluation data set of the proposed system

Both Best

Headset Microphone 16.4 8.4
Lapel Microphone 46.3 26.5
Single Distant Microphone 103.3 91.0

Beamformer 73.9 50.7
Postfiler 58.0 38.3

to a single distant microphone condition in which a single microphone from
sub-array 1 is used. ‘GT-Beamformer’ and ‘GT-Post-filter’ indicate results from
using ground truth microphone and speaker locations for the beamformer both
without and with the post-filter. Finally ‘Beamformer’ and ‘Post-filter’ results
are for the full system without and with post-filter, but using automatically
derived microphone locations. Results are presented for the combined score for
both speakers (the ’Both’ column) and for scoring only the best scoring speaker
for each utterance. This shows that in many cases one speaker is significantly
easier to recognise than the other - possibly because they are either louder,
clearer speakers, or they read longer sentences.

On the development set, using automatically derived microphone and speaker
locations results in slightly lower WER compared with the use of ground truth
data. While this result is encouraging it should be noted that the ground truth
speaker locations are only approximate (as explained in Section 3.2) and that the
results would be expected to improve if the ground-truth speaker locations were
known more accurately. The beamforming system gives much higher WER than
close talking microphones, however it is closer in performance to the lapel micro-
phones, with which microphone array systems have previously been competitive
[14]. A similar pattern of results is seen in the evaluation set, which word error rates
even higher than for the development data, indicating that this is a difficult task.

4 Conclusions and Future Works

We have presented an approach to speech separation based on microphone array
beamforming techniques which avoids the usual problems of beamforming (that
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of requiring detailed knowledge of the recording environment) by automatically
estimating microphone and speaker locations. The technique achieves closer per-
formance to the lapel microphones and shows large improvements in recognition
accuracy compared with the single distant microphone case. The data supplied
with for the PASCAL SSC2, on which the algorithm was evaluated, is a ‘worst
case scenario’ in terms of speaker overlap in that every recording contains over-
lapped speech. This may explain the difference between our approach and recog-
nition results using lapel microphones with which, in other task, beamforming
approaches are usually competitive.

There are several areas in which we plan to improve the system. The array
calibration algorithm relies on the microphones being in a diffuse noise field.
While this is a good model for many practical situations it may not always be
appropriate to assume the diffuse noise case, particularly when the microphones
are widely spaced. We plan to investigate methods of automatic microphone
localisation in other noise fields, and to improve the clustering techniques to
ensure localisation is not affected by widely spaced microphones.

Whilst all utterances have some overlap, most also contain segments in which
one or other of the speakers is solely speaking. In order to improve speaker
localisation accuracy, we plan to segment the utterance into regions of silence,
single speaker activity and overlap, and use different localisation strategies in
each of these cases. We also plan to more closely integrate the array calibration
and source localisation to minimise errors in estimating positions.

Experiments will also be performed to adapt the post filter to not only cancel
cross talk, but also extraneous noise from with the recording environment.
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Brown, Guy J. 271
Burget, Lukáš 237
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